* Non-blocksize-aligned regions could fail to be found. Have the
bootloader load them aligned.
* Consolidating used frame blocks in the bootstrap means these would
have been impossible to free as address space
* mark_permanent wasn't actually removing blocks from the free list
Removed the frame allocation logic from page_manager and replaced it
with using an instance of frame_allocator instead. This had several
major ripple effects:
- memory_initalize() had to change to support this new world
- Where to map used blocks is now passed as a flag, since blocks don't
track their virtual address anymore
- Instead of the complicated "find N contiguous pages that can be
mapped in with one page table", we now just have the bootloader give
us some (currently 64) pages to use both for tables and scratch
space.
- frame_allocator initialization was split into two steps to allow
mapping used blocks before std::move()ing them over
* Heap manager can now manage non-contiguous blocks of memory (currently
all sized at the max block size only)
* Fix a bug where heap manager would try to buddy-merge max-sized blocks
Now any initrd file is treated like a program image and passed to the
loader to load as a process. Very rudimentary elf loading just allocates
pages, copies sections, and sets the ELF's entrypoint as the RIP to
iretq to.
- Create initrd library to support definitions and loading
- Allow tools compiled for the host machine to be built by wscript
- Create makerd tool to build initrd from manifest
- Move screenfont to initrd, so don't load framebuffer initially