Files
jsix/src/kernel/vm_space.cpp
Justin C. Miller 9f54927a82 [util] Remove enum_bitfields
The enum_bitfields system never worked quite right, and always had edge cases where name
resolution for the SFINAE would fail. Move everything over to use util::bitset, which can
be constexpr and boils down to inline integer bitops in release mode.

Improved util::bitset itself, moving the array-backed base implementation into a new
util::sized_bitset, and making the single-inttype backed implementation the base case.
Also added a distinction between | or |= (which work with real bit values) and + or +=
(which work with bit indexes).
2024-02-25 23:40:14 -08:00

403 lines
9.9 KiB
C++

#include <j6/memutils.h>
#include <arch/memory.h>
#include "kassert.h"
#include "frame_allocator.h"
#include "logger.h"
#include "memory.h"
#include "objects/process.h"
#include "objects/thread.h"
#include "objects/vm_area.h"
#include "sysconf.h"
#include "vm_space.h"
using obj::vm_flags;
// The initial memory for the array of areas for the kernel space
static constexpr size_t num_kernel_areas = 8;
static uint64_t kernel_areas[num_kernel_areas * 2];
static constexpr uint64_t locked_page_tag = 0xbadfe11a;
int
vm_space::area::compare(const vm_space::area &o) const
{
if (base > o.base) return 1;
else if (base < o.base) return -1;
else return 0;
}
bool
vm_space::area::operator==(const vm_space::area &o) const
{
return o.base == base && o.area == area;
}
// Kernel address space contsructor
vm_space::vm_space(page_table *p) :
m_kernel {true},
m_pml4 {p},
m_areas {reinterpret_cast<vm_space::area*>(kernel_areas), 0, num_kernel_areas}
{}
vm_space::vm_space() :
m_kernel {false}
{
m_pml4 = page_table::get_table_page();
page_table *kpml4 = kernel_space().m_pml4;
memset(m_pml4, 0, mem::frame_size/2);
for (unsigned i = arch::kernel_root_index; i < arch::table_entries; ++i)
m_pml4->entries[i] = kpml4->entries[i];
// Every vm space has sysconf in it
obj::vm_area *sysc = new obj::vm_area_fixed(
g_sysconf_phys,
sizeof(system_config),
0);
add(sysconf_user_address, sysc, util::bitset32::of(vm_flags::exact));
}
vm_space::~vm_space()
{
for (auto &a : m_areas)
remove_area(a.area);
kassert(!is_kernel(), "Kernel vm_space destructor!");
if (active())
kernel_space().activate();
// All VMAs have been removed by now, so just
// free all remaining pages and tables
m_pml4->free(page_table::level::pml4);
}
vm_space &
vm_space::kernel_space()
{
return obj::process::kernel_process().space();
}
uintptr_t
vm_space::add(uintptr_t base, obj::vm_area *area, util::bitset32 flags)
{
if (!base)
base = min_auto_address;
uintptr_t end = base + area->size();
//TODO: optimize find/insert
bool exact = flags.get(vm_flags::exact);
for (size_t i = 0; i < m_areas.count(); ++i) {
const vm_space::area &a = m_areas[i];
uintptr_t aend = a.base + a.area->size();
if (base >= aend)
continue;
if (end <= a.base)
break;
else if (exact)
return 0;
else
base = aend;
}
m_areas.sorted_insert({base, area});
area->add_to(this);
area->handle_retain();
return base;
}
void
vm_space::remove_area(obj::vm_area *area)
{
area->remove_from(this);
clear(*area, 0, mem::page_count(area->size()));
area->handle_release();
}
bool
vm_space::remove(obj::vm_area *area)
{
for (auto &a : m_areas) {
if (a.area == area) {
remove_area(area);
m_areas.remove(a);
return true;
}
}
return false;
}
bool
vm_space::can_resize(const obj::vm_area &vma, size_t size) const
{
uintptr_t base = 0;
unsigned n = m_areas.count();
for (unsigned i = 1; i < n - 1; ++i) {
const area &prev = m_areas[i - 1];
if (prev.area != &vma)
continue;
base = prev.base;
const area &next = m_areas[i];
if (prev.base + size > next.base)
return false;
}
uintptr_t end = base + size;
uintptr_t space_end = is_kernel() ?
uint64_t(-1) : 0x7fffffffffff;
return end <= space_end;
}
obj::vm_area *
vm_space::get(uintptr_t addr, uintptr_t *base)
{
for (auto &a : m_areas) {
uintptr_t end = a.base + a.area->size();
if (addr >= a.base && addr < end) {
if (base) *base = a.base;
return a.area;
}
}
return nullptr;
}
bool
vm_space::find_vma(const obj::vm_area &vma, uintptr_t &base) const
{
for (auto &a : m_areas) {
if (a.area != &vma) continue;
base = a.base;
return true;
}
return false;
}
void
vm_space::copy_from(const vm_space &source, const obj::vm_area &vma)
{
uintptr_t to = 0;
uintptr_t from = 0;
if (!find_vma(vma, from) || !source.find_vma(vma, from))
return;
size_t count = mem::page_count(vma.size());
page_table::iterator dit {to, m_pml4};
page_table::iterator sit {from, source.m_pml4};
while (count--) {
uint64_t &e = dit.entry(page_table::level::pt);
if (util::bitset64::from(e) & page_flags::present) {
// TODO: handle clobbering mapping
}
e = sit.entry(page_table::level::pt);
}
}
void
vm_space::page_in(const obj::vm_area &vma, uintptr_t offset, uintptr_t phys, size_t count)
{
using mem::frame_size;
util::scoped_lock lock {m_lock};
uintptr_t base = 0;
if (!find_vma(vma, base))
return;
uintptr_t virt = base + offset;
util::bitset64 flags =
page_flags::present |
(m_kernel ? page_flags::none : page_flags::user) |
(vma.flags().get(vm_flags::write) ? page_flags::write : page_flags::none) |
(vma.flags().get(vm_flags::write_combine) ? page_flags::wc : page_flags::none);
page_table::iterator it {virt, m_pml4};
for (size_t i = 0; i < count; ++i) {
uint64_t &entry = it.entry(page_table::level::pt);
entry = (phys + i * frame_size) | flags;
log::spam(logs::paging, "Setting entry for %016llx: %016llx [%04llx]",
it.vaddress(), (phys + i * frame_size), flags.value());
++it;
}
}
void
vm_space::clear(const obj::vm_area &vma, uintptr_t offset, size_t count, bool free)
{
using mem::frame_size;
util::scoped_lock lock {m_lock};
uintptr_t base = 0;
if (!find_vma(vma, base))
return;
uintptr_t addr = base + offset;
uintptr_t free_start = 0;
size_t free_count = 0;
frame_allocator &fa = frame_allocator::get();
page_table::iterator it {addr, m_pml4};
while (count--) {
uint64_t &e = it.entry(page_table::level::pt);
uintptr_t phys = e & ~0xfffull;
util::bitset64 flags = e;
if (flags & page_flags::present) {
e = 0;
if (flags & page_flags::accessed) {
auto *addr = reinterpret_cast<const uint8_t *>(it.vaddress());
asm ( "invlpg %0" :: "m"(*addr) : "memory" );
}
if (free_count && phys == free_start + (free_count * frame_size)) {
++free_count;
} else {
if (free && free_count)
fa.free(free_start, free_count);
free_start = phys;
free_count = 1;
}
}
++it;
}
if (free && free_count)
fa.free(free_start, free_count);
}
void
vm_space::lock(const obj::vm_area &vma, uintptr_t offset, size_t count)
{
using mem::frame_size;
util::scoped_lock lock {m_lock};
uintptr_t base = 0;
if (!find_vma(vma, base))
return;
uintptr_t addr = base + offset;
frame_allocator &fa = frame_allocator::get();
page_table::iterator it {addr, m_pml4};
while (count--) {
uint64_t &e = it.entry(page_table::level::pt);
uintptr_t phys = e & ~0xfffull;
util::bitset64 flags = e;
if (flags & page_flags::present) {
e = locked_page_tag;
if (flags & page_flags::accessed) {
auto *addr = reinterpret_cast<const uint8_t *>(it.vaddress());
asm ( "invlpg %0" :: "m"(*addr) : "memory" );
}
fa.free(phys, 1);
}
++it;
}
}
uintptr_t
vm_space::lookup(const obj::vm_area &vma, uintptr_t offset)
{
uintptr_t base = 0;
if (!find_vma(vma, base))
return 0;
return base + offset;
}
bool
vm_space::active() const
{
uintptr_t pml4 = 0;
__asm__ __volatile__ ( "mov %%cr3, %0" : "=r" (pml4) );
return mem::to_virtual<page_table>(pml4 & ~0xfffull) == m_pml4;
}
void
vm_space::activate() const
{
constexpr uint64_t phys_mask = ~mem::linear_offset & ~0xfffull;
uintptr_t p = reinterpret_cast<uintptr_t>(m_pml4) & phys_mask;
__asm__ __volatile__ ( "mov %0, %%cr3" :: "r" (p) );
}
void
vm_space::initialize_tcb(TCB &tcb)
{
tcb.pml4 =
reinterpret_cast<uintptr_t>(m_pml4) &
~mem::linear_offset;
}
bool
vm_space::handle_fault(uintptr_t addr, util::bitset8 fault)
{
// TODO: Handle more fult types
if (fault.get(fault_type::present))
return false;
uintptr_t page = (addr & ~0xfffull);
uintptr_t base = 0;
obj::vm_area *area = get(addr, &base);
if (!area)
return false;
if constexpr (__debug_heap_allocation) {
page_table::iterator it {addr, m_pml4};
uint64_t &e = it.entry(page_table::level::pt);
kassert(e != locked_page_tag, "Use-after-free");
if (e == locked_page_tag)
return false;
}
uintptr_t offset = page - base;
uintptr_t phys_page = 0;
if (!area->get_page(offset, phys_page))
return false;
page_in(*area, offset, phys_page, 1);
return true;
}
size_t
vm_space::copy(vm_space &source, vm_space &dest, const void *from, void *to, size_t length)
{
uintptr_t ifrom = reinterpret_cast<uintptr_t>(from);
uintptr_t ito = reinterpret_cast<uintptr_t>(to);
page_table::iterator sit {ifrom, source.m_pml4};
page_table::iterator dit {ito, dest.m_pml4};
// TODO: iterate page mappings and continue copying. For now i'm blindly
// assuming both buffers are fully contained within single pages
memcpy(
mem::to_virtual<void>((*dit & ~0xfffull) | (ito & 0xffful)),
mem::to_virtual<void>((*sit & ~0xfffull) | (ifrom & 0xffful)),
length);
return length;
}
uintptr_t
vm_space::find_physical(uintptr_t virt)
{
uintptr_t base = 0;
obj::vm_area *area = get(virt, &base);
if (!area)
return 0;
uintptr_t phys = 0;
area->get_page(virt - base, phys, false);
return phys;
}