The enum_bitfields system never worked quite right, and always had edge cases where name
resolution for the SFINAE would fail. Move everything over to use util::bitset, which can
be constexpr and boils down to inline integer bitops in release mode.
Improved util::bitset itself, moving the array-backed base implementation into a new
util::sized_bitset, and making the single-inttype backed implementation the base case.
Also added a distinction between | or |= (which work with real bit values) and + or +=
(which work with bit indexes).
This change allows the `vma_map` and `vma_create_map` syscalls to map to
addresses other than the one specified, and therefore makes the address
parameter to those syscalls `inout` in order to return the mapped
address.
Also add the `exact` flag for specifying that mapping needs to be done
at the exact address given. If the mapping collides with another, the
new `j6_err_collision` error is returned.
This is the first of two rather big changes to clean up includes
throughout the project. In this commit, the implicit semi-dependency on
libc that bonnibel adds to every module is removed. Previously, I was
sloppy with includes of libc headers and include directory order. Now,
the freestanding headers from libc are split out into libc_free, and an
implicit real dependency is added onto this module, unless `no_libc` is
set to `True`. The full libc needs to be explicitly specified as a
dependency to be used.
Several things needed to change in order to do this:
- Many places use `memset` or `memcpy` that cannot depend on libc. The
kernel has basic implementations of them itself for this reason. Now
those functions are moved into the lower-level `j6/memutils.h`, and
libc merely references them. Other modules are now free to reference
those functions from libj6 instead.
- The kernel's `assert.h` was renamed kassert.h (matching its `kassert`
function) so that the new `util/assert.h` can use `__has_include` to
detect it and make sure the `assert` macro is usable in libutil code.
- Several implementation header files under `__libj6/` also moved under
the new libc_free.
- A new `include_phase` property has been added to modules for Bonnibel,
which can be "normal" (default) or "late" which uses `-idirafter`
instead of `-I` for includes.
- Since `<utility>` and `<new>` are not freestanding, implementations of
`remove_reference`, `forward`, `move`, and `swap` were added to the
`util` namespace to replace those from `std`, and `util/new.h` was
added to declare `operator new` and `operator delete`.
Add the syscalls j6_futex_wait and j6_futex_wake. Currently marking this
as WIP as they need more testing.
Added to support futexes:
- vm_area and vm_space support for looking up physical address for a
virtual address
- libj6 mutex implementation using futex system calls
There was an inverted boolean logic in determining how many consecutive
pages were available.
Also adding some memory debugging tools I added to track down the recent
memory bugs:
- A direct debugcon::write call, for logging to the debugcon without the
possible page faults with the logger.
- A new vm_space::lock call, to make a page not fillable in memory
debugging mode
- A mode in heap_allocator to always alloc new pages, and lock freed
pages to cause page faults for use-after-free bugs.
- Logging in kobject on creation and deletion
- Page table cache structs are now page-sized for easy pointer math
The kernel log levels are now numerically reversed so that more-verbose
levels can be added to the end. Replaced 'debug' with 'verbose', and
added new 'spam' level.
This has always been on the todo list, but it finally bit me. srv.init
re-uses load addresses when loading multiple programs, and collision
between reused addresses was causing corruption without the TLB flush.
Now srv.init also doesn't increment its load address for sections when
loading a single program either, since unmapping pages actually works.
This commit contains a couple large, interdependent changes:
- In preparation for capability checking, the _syscall_verify_*
functions now load most handles passed in, and verify that they exist
and are of the correct type. Lists and out-handles are not converted
to objects.
- Also in preparation for capability checking, the internal
representation of handles has changed. j6_handle_t is now 32 bits, and
a new j6_cap_t (also 32 bits) is added. Handles of a process are now a
util::map<j6_handle_t, handle> where handle is a new struct containing
the id, capabilities, and object pointer.
- The kernel object definition DSL gained a few changes to support auto
generating the handle -> object conversion in the _syscall_verify_*
functions, mostly knowing the object type, and an optional "cname"
attribute on objects where their names differ from C++ code.
(Specifically vma/vm_area)
- Kernel object code and other code under kernel/objects is now in a new
obj:: namespace, because fuck you <cstdlib> for putting "system" in
the global namespace. Why even have that header then?
- Kernel object types constructed with the construct_handle helper now
have a creation_caps static member to declare what capabilities a
newly created object's handle should have.
First attempt at a UART driver. I'm not sure it's the most stable. Now
that userspace is handling displaying logs, also removed serial and log
output support from the kernel.
A structure, system_config, which is dynamically defined by the
definitions/sysconf.yaml config, is now mapped into every user address
space. The kernel fills this with information about itself and the
running machine.
User programs access this through the new j6_sysconf fake syscall in
libj6.
See: Github bug #242
See: [frobozz blog post](https://jsix.dev/posts/frobozz/)
Tags:
This is a rather large commit that is widely focused on cleaning things
out of the 'junk drawer' that is src/include. Most notably, several
things that were put in there because they needed somewhere where both
the kernel, boot, and init could read them have been moved to a new lib,
'bootproto'.
- Moved kernel_args.h and init_args.h to bootproto as kernel.h and
init.h, respectively.
- Moved counted.h and pointer_manipulation.h into util, renaming the
latter to util/pointers.h.
- Created a new src/include/arch for very arch-dependent definitions,
and moved some kernel_memory.h constants like frame size, page table
entry count, etc to arch/amd64/memory.h. Also created arch/memory.h
which detects platform and includes the former.
- Got rid of kernel_memory.h entirely in favor of a new, cog-based
approach. The new definitions/memory_layout.csv lists memory regions
in descending order from the top of memory, their sizes, and whether
they are shared outside the kernel (ie, boot needs to know them). The
new header bootproto/memory.h exposes the addresses of the shared
regions, while the kernel's memory.h gains the start and size of all
the regions. Also renamed the badly-named page-offset area the linear
area.
- The python build scripts got a few new features: the ability to parse
the csv mentioned above in a new memory.py module; the ability to add
dependencies to existing source files (The list of files that I had to
pull out of the main list just to add them with the dependency on
memory.h was getting too large. So I put them back into the sources
list, and added the dependency post-hoc.); and the ability to
reference 'source_root', 'build_root', and 'module_root' variables in
.module files.
- Some utility functions that were in the kernel's memory.h got moved to
util/pointers.h and util/misc.h, and misc.h's byteswap was renamed
byteswap32 to be more specific.
Now that kutil has no kernel-specific code in it anymore, it can
actually be linked to by anything, so I'm renaming it 'util'.
Also, I've tried to unify the way that the system libraries from
src/libraries are #included using <> instead of "".
Other small change: util::bip_buffer got a spinlock to guard against
state corruption.
Continuing moving things out of kutil. The assert as implemented could
only ever work in the kernel, so remaining kutil uses of kassert have
been moved to including standard C assert instead.
Along the way, kassert was broken out into panic::panic and kassert,
and the panic.serial namespace was renamed panicking.
The moving of kernel-only code out of kutil continues. (See 042f061)
This commit moves the following:
- The heap allocator code
- memory.cpp/h which means:
- letting string.h be the right header for memset and memcpy, still
including an implementation of it for the kernel though, since
we're not linking libc to the kernel
- Changing calls to kalloc/kfree to new/delete in kutil containers
that aren't going to be merged into the kernel
- Fixing a problem with stdalign.h from libc, which was causing issues
for type_traits.
The vm_area objects had a number of issues I have been running into when
working on srv.init:
- It was impossible to map a VMA, fill it, unmap it, and hand it to
another process. Unmapping the VMA in this process would cause all the
pages to be freed, since it was removed from its last mapping.
- If a VMA was marked with vm_flag::zero, it would be zeroed out _every
time_ it was mapped into a vm_space.
- The vm_area_open class was leaking its page_tree nodes.
In order to fix these issues, the different VMA types all work slightly
differently now:
- Physical pages allocated for a VMA are now freed when the VMA is
deleted, not when it is unmapped.
- A knock-on effect from the first point is that vm_area_guarded is now
based on vm_area_open, instead of vm_area_untracked. An untracked area
cannot free its pages, since it does not track them.
- The vm_area_open type now deletes its root page_tree node. And
page_tree nodes will delete child nodes or free physical pages in
their dtors.
- vm_flag::zero has been removed; pages will need to be zeroed out
further at a higher level.
- vm_area also no longer deletes itself only on losing its last handle -
it will only self-delete when all handles _and_ mappings are gone.
This change adds a new interface DSL for specifying objects (with
methods) and interfaces (that expose objects, and optionally have their
own methods).
Significant changes:
- Add the new scripts/definitions Python module to parse the DSL
- Add the new definitions directory containing DSL definition files
- Use cog to generate syscall-related code in kernel and libj6
- Unify ordering of pointer + length pairs in interfaces
I'm a tabs guy. I like tabs, it's an elegant way to represent
indentation instead of brute-forcing it. But I have to admit that the
world seems to be going towards spaces, and tooling tends not to play
nice with tabs. So here we go, changing the whole repo to spaces since
I'm getting tired of all the inconsistent formatting.
The previous method of VMA page tracking relied on the VMA always being
mapped at least into one space and just kept track of pages in the
spaces' page tables. This had a number of drawbacks, and the mapper
system was too complex without much benefit.
Now make VMAs themselves keep track of spaces that they're a part of,
and make them responsible for knowing what page goes where. This
simplifies most types of VMA greatly. The new vm_area_open (nee
vm_area_shared, but there is now no reason for most VMAs to be
explicitly shareable) adds a 64-ary radix tree for tracking allocated
pages.
The page_tree cannot yet handle taking pages away, but this isn't
something jsix can do yet anyway.
ktuil::vector can take a static area of memory as its initial memory,
but the case was never handled where it outgrew that memory and had to
reallocate. Steal the high bit from the capacity value to indicate the
current memory should not be kfree()'d. Also added checks in the heap
allocator to make sure pointers look valid.
Refactored out vm_space::handle_fault's allocation code into a separate
vm_space::allocate function, and reimplemented handle_fault in terms of
the new function.
Several changes were needed to make this work:
- Update the page_table::flags to understand memory caching types
- Set up the PAT MSR to add the WC option
- Make page-offset area mapped as WT
- Add all the MTRR and PAT MSRs, and log the MTRRs for verification
- Add a vm_area flag for write_combining
Create a new framebuffer driver. Also hackily passing frame buffer size
in the list of init handles to all processes and mapping the framebuffer
into all processes. Changed bootloader passing frame buffer as a module
to its own struct.
The allowed flag was janky and easy to get lost when doing page table
manipulation. All allocation goes throug vm_area now, so 'allowed' can
be dropped.
The vm_space allow() functionality was a bit janky; using VMAs for all
regions would be a lot cleaner. To that end, this change:
- Adds a "static array" ctor to kutil::vector for setting the kernel
address space's VMA list. This way a kernel heap VMA can be created
without the heap already existing.
- Splits vm_area into different subclasses depending on desired behavior
- Splits out the concept of vm_mapper which maps vm_areas to vm_spaces,
so that some kinds of VMA can be inherently single-space
- Implements VMA resizing so that userspace can grow allocations.
- Obsolete page_table_indices is removed
Also, the following bugs were fixed:
- kutil::map iterators on empty maps no longer break
- memory::page_count was doing page-align, not page-count
See: Github bug #242
See: [frobozz blog post](https://jsix.dev/posts/frobozz/)
Tags:
Finished the VMA kobject and added the related syscalls. Processes can
now allocate memory! Other changes in this commit:
- stop using g_frame_allocator and add frame_allocator::get()
- make sure to release all handles in the process dtor
- fix kutil::map::iterator never comparing to end()
vm_space no longer relies on page_manager to map pages during a page
fault. Other changes that come with this commit:
- C++ standard has been changed to C++17
- enum bitfield operators became constexpr
- enum bifrield operators can take a mix of ints and enum arguments
- added page table flags enum instead of relying on ints
- remove page_table::unmap_table and page_table::unmap_pages
As mentioned in the last commit, with processes owning spaces, there was
a weird extra space in the "kernel" process that owns the kernel
threads. Now we use that space as the global kernel space, and don't
create a separate one.
vm_space and page_table continue to take over duties from
page_manager:
- creation and deletion of address spaces / pml4s
- cross-address-space copies for endpoints
- taking over pml4 ownership from process
Also fixed the bug where the wrong process was being set in the cpu
data.
To solve: now the kernel process has its own vm_space which is not
g_kernel_space.
This is the first commit of several reworking the VM system. The main
focus is replacing page_manager's global functionality with objects
representing individual VM spaces. The main changes in this commit were:
- Adding the (as yet unused) vm_area object, which will be the main
point of control for programs to allocate or share memory.
- Replace the old vm_space with a new one based on state in its page
tables. They will also be containers for vm_areas.
- vm_space takes over from page_manager as the page fault handler
- Commented out the page walking in memory_bootstrap; I'll probably need
to recreate this functionality, but it was broken as it was.
- Split out the page_table.h implementations from page_manager.cpp into
the new page_table.cpp, updated it, and added page_table::iterator as
well.