Files
jsix/src/kernel/device_manager.cpp
Justin C. Miller 8bb9e22218 [kernel] Move bind_irq syscall to new system object
In order to implement capabilities on system resources like IRQs so that
they may be restricted to drivers only, add a new 'system' kobject type,
and move the bind_irq functionality from endpoint to system.

Also fix some stack bugs passing the initial handles to a program.
2020-10-18 20:45:06 -07:00

404 lines
9.5 KiB
C++

#include <stddef.h>
#include <stdint.h>
#include "kutil/assert.h"
#include "kutil/memory.h"
#include "acpi_tables.h"
#include "apic.h"
#include "clock.h"
#include "console.h"
#include "device_manager.h"
#include "interrupts.h"
#include "kernel_memory.h"
#include "log.h"
#include "objects/endpoint.h"
static endpoint * const ignore_endpoint = reinterpret_cast<endpoint*>(-1ull);
static const char expected_signature[] = "RSD PTR ";
device_manager device_manager::s_instance;
struct acpi1_rsdp
{
char signature[8];
uint8_t checksum;
char oem_id[6];
uint8_t revision;
uint32_t rsdt_address;
} __attribute__ ((packed));
struct acpi2_rsdp
{
char signature[8];
uint8_t checksum10;
char oem_id[6];
uint8_t revision;
uint32_t rsdt_address;
uint32_t length;
uint64_t xsdt_address;
uint8_t checksum20;
uint8_t reserved[3];
} __attribute__ ((packed));
bool
acpi_table_header::validate(uint32_t expected_type) const
{
if (kutil::checksum(this, length) != 0) return false;
return !expected_type || (expected_type == type);
}
void irq2_callback(void *)
{
}
void irq4_callback(void *)
{
// TODO: move this to a real serial driver
console *cons = console::get();
cons->echo();
}
device_manager::device_manager() :
m_lapic(0)
{
m_irqs.ensure_capacity(32);
m_irqs.set_size(16);
for (int i = 0; i < 16; ++i)
m_irqs[i] = nullptr;
m_irqs[2] = ignore_endpoint;
}
void
device_manager::parse_acpi(const void *root_table)
{
kassert(root_table != 0, "ACPI root table pointer is null.");
const acpi1_rsdp *acpi1 =
reinterpret_cast<const acpi1_rsdp *>(root_table);
for (int i = 0; i < sizeof(acpi1->signature); ++i)
kassert(acpi1->signature[i] == expected_signature[i],
"ACPI RSDP table signature mismatch");
uint8_t sum = kutil::checksum(acpi1, sizeof(acpi1_rsdp), 0);
kassert(sum == 0, "ACPI 1.0 RSDP checksum mismatch.");
kassert(acpi1->revision > 1, "ACPI 1.0 not supported.");
const acpi2_rsdp *acpi2 =
reinterpret_cast<const acpi2_rsdp *>(acpi1);
sum = kutil::checksum(acpi2, sizeof(acpi2_rsdp), sizeof(acpi1_rsdp));
kassert(sum == 0, "ACPI 2.0 RSDP checksum mismatch.");
load_xsdt(reinterpret_cast<const acpi_xsdt *>(acpi2->xsdt_address));
}
ioapic *
device_manager::get_ioapic(int i)
{
return (i < m_ioapics.count()) ? &m_ioapics[i] : nullptr;
}
static void
put_sig(char *into, uint32_t type)
{
for (int j=0; j<4; ++j) into[j] = reinterpret_cast<char *>(&type)[j];
}
void
device_manager::load_xsdt(const acpi_xsdt *xsdt)
{
kassert(xsdt && acpi_validate(xsdt), "Invalid ACPI XSDT.");
char sig[5] = {0,0,0,0,0};
log::info(logs::device, "ACPI 2.0+ tables loading");
put_sig(sig, xsdt->header.type);
log::debug(logs::device, " Found table %s", sig);
size_t num_tables = acpi_table_entries(xsdt, sizeof(void*));
for (size_t i = 0; i < num_tables; ++i) {
const acpi_table_header *header = xsdt->headers[i];
put_sig(sig, header->type);
log::debug(logs::device, " Found table %s", sig);
kassert(header->validate(), "Table failed validation.");
switch (header->type) {
case acpi_apic::type_id:
load_apic(reinterpret_cast<const acpi_apic *>(header));
break;
case acpi_mcfg::type_id:
load_mcfg(reinterpret_cast<const acpi_mcfg *>(header));
break;
case acpi_hpet::type_id:
load_hpet(reinterpret_cast<const acpi_hpet *>(header));
break;
default:
break;
}
}
}
void
device_manager::load_apic(const acpi_apic *apic)
{
uintptr_t local = apic->local_address;
m_lapic = new lapic(local, isr::isrSpurious);
size_t count = acpi_table_entries(apic, 1);
uint8_t const *p = apic->controller_data;
uint8_t const *end = p + count;
// Pass one: count IOAPIC objcts
int num_ioapics = 0;
while (p < end) {
const uint8_t type = p[0];
const uint8_t length = p[1];
if (type == 1) num_ioapics++;
p += length;
}
m_ioapics.set_capacity(num_ioapics);
// Pass two: set up IOAPIC objcts
p = apic->controller_data;
while (p < end) {
const uint8_t type = p[0];
const uint8_t length = p[1];
if (type == 1) {
uintptr_t base = kutil::read_from<uint32_t>(p+4);
uint32_t base_gsr = kutil::read_from<uint32_t>(p+8);
m_ioapics.emplace(base, base_gsr);
}
p += length;
}
// Pass three: configure APIC objects
p = apic->controller_data;
while (p < end) {
const uint8_t type = p[0];
const uint8_t length = p[1];
switch (type) {
case 0: { // Local APIC
uint8_t uid = kutil::read_from<uint8_t>(p+2);
uint8_t id = kutil::read_from<uint8_t>(p+3);
log::debug(logs::device, " Local APIC uid %x id %x", id);
}
break;
case 1: // I/O APIC
break;
case 2: { // Interrupt source override
uint8_t source = kutil::read_from<uint8_t>(p+3);
isr gsi = isr::irq00 + kutil::read_from<uint32_t>(p+4);
uint16_t flags = kutil::read_from<uint16_t>(p+8);
log::debug(logs::device, " Intr source override IRQ %d -> %d Pol %d Tri %d",
source, gsi, (flags & 0x3), ((flags >> 2) & 0x3));
// TODO: in a multiple-IOAPIC system this might be elsewhere
m_ioapics[0].redirect(source, static_cast<isr>(gsi), flags, true);
}
break;
case 4: {// LAPIC NMI
uint8_t cpu = kutil::read_from<uint8_t>(p + 2);
uint8_t num = kutil::read_from<uint8_t>(p + 5);
uint16_t flags = kutil::read_from<uint16_t>(p + 3);
log::debug(logs::device, " LAPIC NMI Proc %d LINT%d Pol %d Tri %d",
kutil::read_from<uint8_t>(p+2),
kutil::read_from<uint8_t>(p+5),
kutil::read_from<uint16_t>(p+3) & 0x3,
(kutil::read_from<uint16_t>(p+3) >> 2) & 0x3);
m_lapic->enable_lint(num, num == 0 ? isr::isrLINT0 : isr::isrLINT1, true, flags);
}
break;
default:
log::debug(logs::device, " APIC entry type %d", type);
}
p += length;
}
for (uint8_t i = 0; i < m_ioapics[0].get_num_gsi(); ++i) {
switch (i) {
case 2: break;
default: m_ioapics[0].mask(i, false);
}
}
m_lapic->enable();
}
void
device_manager::load_mcfg(const acpi_mcfg *mcfg)
{
size_t count = acpi_table_entries(mcfg, sizeof(acpi_mcfg_entry));
m_pci.set_size(count);
m_devices.set_capacity(16);
for (unsigned i = 0; i < count; ++i) {
const acpi_mcfg_entry &mcfge = mcfg->entries[i];
m_pci[i].group = mcfge.group;
m_pci[i].bus_start = mcfge.bus_start;
m_pci[i].bus_end = mcfge.bus_end;
m_pci[i].base = memory::to_virtual<uint32_t>(mcfge.base);
log::debug(logs::device, " Found MCFG entry: base %lx group %d bus %d-%d",
mcfge.base, mcfge.group, mcfge.bus_start, mcfge.bus_end);
}
probe_pci();
}
void
device_manager::load_hpet(const acpi_hpet *hpet)
{
log::debug(logs::device, " Found HPET device #%3d: base %016lx pmin %d attr %02x",
hpet->index, hpet->base_address.address, hpet->periodic_min, hpet->attributes);
uint32_t hwid = hpet->hardware_id;
uint8_t rev_id = hwid & 0xff;
uint8_t comparators = (hwid >> 8) & 0x1f;
uint8_t count_size_cap = (hwid >> 13) & 1;
uint8_t legacy_replacement = (hwid >> 15) & 1;
uint32_t pci_vendor_id = (hwid >> 16);
log::debug(logs::device, " rev:%02d comparators:%02d count_size_cap:%1d legacy_repl:%1d",
rev_id, comparators, count_size_cap, legacy_replacement);
log::debug(logs::device, " pci vendor id: %04x", pci_vendor_id);
m_hpets.emplace(hpet->index,
reinterpret_cast<uint64_t*>(hpet->base_address.address + ::memory::page_offset));
}
void
device_manager::probe_pci()
{
for (auto &pci : m_pci) {
log::debug(logs::device, "Probing PCI group at base %016lx", pci.base);
for (int bus = pci.bus_start; bus <= pci.bus_end; ++bus) {
for (int dev = 0; dev < 32; ++dev) {
if (!pci.has_device(bus, dev, 0)) continue;
auto &d0 = m_devices.emplace(pci, bus, dev, 0);
if (!d0.multi()) continue;
for (int i = 1; i < 8; ++i) {
if (pci.has_device(bus, dev, i))
m_devices.emplace(pci, bus, dev, i);
}
}
}
}
}
void
device_manager::init_drivers()
{
// Eventually this should be e.g. a lookup into a loadable driver list
// for now, just look for AHCI devices
/*
for (auto &device : m_devices) {
if (device.devclass() != 1 || device.subclass() != 6)
continue;
if (device.progif() != 1) {
log::warn(logs::device, "Found SATA device %d:%d:%d, but not an AHCI interface.",
device.bus(), device.device(), device.function());
}
ahcid.register_device(&device);
}
*/
if (m_hpets.count() > 0) {
hpet &h = m_hpets[0];
h.enable();
// becomes the singleton
clock *master_clock = new clock(h.rate(), hpet_clock_source, &h);
kassert(master_clock, "Failed to allocate master clock");
log::info(logs::clock, "Created master clock using HPET 0: Rate %d", h.rate());
} else {
//TODO: APIC clock?
kassert(0, "No HPET master clock");
}
}
bool
device_manager::dispatch_irq(unsigned irq)
{
if (irq >= m_irqs.count())
return false;
endpoint *e = m_irqs[irq];
if (!e || e == ignore_endpoint)
return e == ignore_endpoint;
e->signal_irq(irq);
return true;
}
bool
device_manager::bind_irq(unsigned irq, endpoint *target)
{
// TODO: grow if under max size
if (irq >= m_irqs.count())
return false;
m_irqs[irq]= target;
return true;
}
void
device_manager::unbind_irqs(endpoint *target)
{
const size_t count = m_irqs.count();
for (size_t i = 0; i < count; ++i) {
if (m_irqs[i] == target)
m_irqs[i] = nullptr;
}
}
bool
device_manager::allocate_msi(const char *name, pci_device &device, irq_callback cb, void *data)
{
/*
// TODO: find gaps to fill
uint8_t irq = m_irqs.count();
isr vector = isr::irq00 + irq;
m_irqs.append({name, cb, data});
log::debug(logs::device, "Allocating IRQ %02x to %s.", irq, name);
device.write_msi_regs(
0xFEE00000,
static_cast<uint16_t>(vector));
*/
return true;
}
void
device_manager::register_block_device(block_device *blockdev)
{
m_blockdevs.append(blockdev);
}