Bonnibel will now build dynamic libraries when they're dependencies for
non-statically linked modules. It will also copy those shared libraries
into the initrd image for programs being copied into the image.
This commit includes a number of changes to enable loading of PIE
executables:
- The loader in srv.init checks for a `PT_INTERP` segment in the program
its loading, and if it exists, loads the specified interpreter and
passes control to it instead of the program itself.
- Added ld.so the dynamic linker executable and set it as the
interpreter for all user-target programs.
- Program initial stack changed again to now contain a number of
possible tagged structures, including a new one for ld.so's arguments,
and for passing handles tagged with protocol ids.
- Added a stub for a new VFS protocol. Unused so far, but srv.init will
need to serve VFS requests from ld.so once I transition libraries to
shared libs for user-target programs. (Right now all executables are
PIE but statically linked, so they only need internal relocations.)
- Added 16 and 8 bit variants of `util::bitset`. This ended up not being
used, but could be useful.
This is the second of two big changes to clean up includes throughout
the project. Since I've started using clangd with Neovim and using
VSCode's intellisense, my former strategy of copying all header files
into place in `build/include` means that the real files don't show up in
`compile_commands.json` and so display many include errors when viewing
those header files in those tools.
That setup was mostly predicated on a desire to keep directory depths
small, but really I don't think paths like `src/libraries/j6/j6` are
much better than `src/libraries/j6/include/j6`, and the latter doesn't
have the aforementioned issues, and is clearer to the casual observer as
well.
Some additional changes:
- Added a new module flag `copy_headers` for behavior similar to the old
style, but placing headers in `$module_dir/include` instead of the
global `build/include`. This was needed for external projects that
don't follow the same source/headers folder structure - in this case,
`zstd`.
- There is no longer an associated `headers.*.ninja` for each
`module.*.ninja` file, as only parsed headers need to be listed; this
functionality has been moved back into the module's ninja file.
This was kept in the kernel as a way to keep exercising the code, but it
doesn't belong there. This moves it to init, which doesn't do anything
but probe for devices currently - but at least it's executing the code
in userspace now.
In order to pass along arguments like the framebuffer, it's far simpler
to have that data stored along with the modules than mapping new pages
for every structure. Also now optionally pass a module's data to a
driver as init starts it.
Restructuring paging into an object that carries its page cache with it
and makes for simpler code. Program loading is also changed to not copy
the pages loaded from the file into new pages - we can impose a new
constraint that anything loaded by boot have a simple, page-aligned
layout so that we can just map the existing pages into the right
addresses. Also included are some linker script changes to help
accommodate this.
The initrd image is now created by the build system, loaded by the
bootloader, and passed to srv.init, which loads it (but doesn't do
anything with it yet, so this is actually a functional regression).
This simplifies a lot of the modules code between boot and init as well:
Gone are the many subclasses of module and all the data being inline
with the module structs, except for any loaded files. Now the only
modules loaded and passed will be the initrd, and any devices only the
bootloader has knowledge of, like the UEFI framebuffer.
The great header shift: It didn't make sense to regenerate headers for
the same module for every target (boot/kernel/user) it appeared in. And
now that core headers are out of src/include, this was going to cause
problems for the new libc changes I've been working on. So I went back
to re-design how module headers work.
Pre-requisites:
- A module's public headers should all be available in one location, not
tied to target.
- No accidental includes. Another module should not be able to include
anything (creating an implicit dependency) from a module without
declaring an explicit dependency.
- Exception to the previous: libc's headers should be available to all,
at least for the freestanding headers.
New system:
- A new "public_headers" property of module declares all public headers
that should be available to dependant modules
- All public headers (after possible processing) are installed relative
to build/include/<module> with the same path as their source
- This also means no "include" dir in modules is necessary. If a header
should be included as <j6/types.h> then its source should be
src/libraries/j6/j6/types.h - this caused the most churn as all public
header sources moved one directory up.
- The "includes" property of a module is local only to that module now,
it does not create any implicit public interface
Other changes:
- The bonnibel concept of sources changed: instead of sources having
actions, they themselves are an instance of a (sub)class of Source,
which provides all the necessary information itself.
- Along with the above, rule names were standardized into <type>.<ext>,
eg "compile.cpp" or "parse.cog"
- cog and cogflags variables moved from per-target scope to global scope
in the build files.
- libc gained a more dynamic .module file
The manifest can now supply a list of boot flags, including "test".
Those get turned into the bootproto::args::flags field by the
bootloader. The kernel takes those and uses the test flag to control
enabling syscalls with the new "test" attribute, like the new
test_finish syscall, which lets automated tests call back to the kernel
to shut down the system.
Kernel panics previously only stopped the calling core. This commit
re-implements the panic system to allow us to stop all cores on a panic.
Changes include:
- panic now sends an NMI to all cores. This means we can't control the
contents of their registers, so panic information has been moved to a
global struct, and the panicking cpu sets the pointer to that data in
its cpu_data.
- the panic_handler is now set up with mutexes to print appropriately
and only initialize objects once.
- copying _current_gsbase into the panic handler, and #including the
cpprt.cpp file (so that we can define NDEBUG and not have it try to
link the assert code back in)
- making the symbol data pointer in kargs an actual pointer again, not
an address - and carrying that through to the panic handler
- the number of cpus is now saved globally in the kernel as g_num_cpus
While bonnibel already had the concept of a manifest, which controls
what goes into the built disk image, the bootloader still had filenames
hard-coded. Now bonnibel creates a 'jsix_boot.dat' file that tells the
bootloader what it should load.
Changes include:
- Modules have two new fields: location and description. location is
their intended directory on the EFI boot volume. description is
self-explanatory, and is used in log messages.
- New class, boot::bootconfig, implements reading of jsix_boot.dat
- New header, bootproto/bootconfig.h, specifies flags used in the
manifest and jsix_boot.dat
- New python module, bonnibel/manifest.py, encapsulates reading of the
manifest and writing jsix_boot.dat
- Syntax of the manifest changed slightly, including adding flags
- Boot and Kernel target ccflags unified a bit (this was partly due to
trying to get enum_bitfields to work in boot)
- util::counted gained operator+= and new free function util::read<T>
This is a rather large commit that is widely focused on cleaning things
out of the 'junk drawer' that is src/include. Most notably, several
things that were put in there because they needed somewhere where both
the kernel, boot, and init could read them have been moved to a new lib,
'bootproto'.
- Moved kernel_args.h and init_args.h to bootproto as kernel.h and
init.h, respectively.
- Moved counted.h and pointer_manipulation.h into util, renaming the
latter to util/pointers.h.
- Created a new src/include/arch for very arch-dependent definitions,
and moved some kernel_memory.h constants like frame size, page table
entry count, etc to arch/amd64/memory.h. Also created arch/memory.h
which detects platform and includes the former.
- Got rid of kernel_memory.h entirely in favor of a new, cog-based
approach. The new definitions/memory_layout.csv lists memory regions
in descending order from the top of memory, their sizes, and whether
they are shared outside the kernel (ie, boot needs to know them). The
new header bootproto/memory.h exposes the addresses of the shared
regions, while the kernel's memory.h gains the start and size of all
the regions. Also renamed the badly-named page-offset area the linear
area.
- The python build scripts got a few new features: the ability to parse
the csv mentioned above in a new memory.py module; the ability to add
dependencies to existing source files (The list of files that I had to
pull out of the main list just to add them with the dependency on
memory.h was getting too large. So I put them back into the sources
list, and added the dependency post-hoc.); and the ability to
reference 'source_root', 'build_root', and 'module_root' variables in
.module files.
- Some utility functions that were in the kernel's memory.h got moved to
util/pointers.h and util/misc.h, and misc.h's byteswap was renamed
byteswap32 to be more specific.