Files
jsix_import/src/kernel/memory_bootstrap.cpp
Justin C. Miller a6ec294f63 [kernel] Move more from kutil to kernel
The moving of kernel-only code out of kutil continues. (See 042f061)
This commit moves the following:

- The heap allocator code
- memory.cpp/h which means:
  - letting string.h be the right header for memset and memcpy, still
    including an implementation of it for the kernel though, since
    we're not linking libc to the kernel
  - Changing calls to kalloc/kfree to new/delete in kutil containers
    that aren't going to be merged into the kernel
- Fixing a problem with stdalign.h from libc, which was causing issues
  for type_traits.
2022-01-01 23:23:51 -08:00

210 lines
6.8 KiB
C++

#include <utility>
#include "kernel_args.h"
#include "j6/init.h"
#include "enum_bitfields.h"
#include "kutil/assert.h"
#include "kutil/no_construct.h"
#include "device_manager.h"
#include "frame_allocator.h"
#include "gdt.h"
#include "heap_allocator.h"
#include "io.h"
#include "log.h"
#include "msr.h"
#include "objects/process.h"
#include "objects/thread.h"
#include "objects/system.h"
#include "objects/vm_area.h"
#include "vm_space.h"
using memory::heap_start;
using memory::kernel_max_heap;
namespace kernel {
namespace init {
is_bitfield(section_flags);
}}
using kernel::init::allocation_register;
using kernel::init::section_flags;
using namespace kernel;
extern "C" void initialize_main_thread();
extern "C" uintptr_t initialize_main_user_stack();
// These objects are initialized _before_ global constructors are called,
// so we don't want them to have global constructors at all, lest they
// overwrite the previous initialization.
static kutil::no_construct<heap_allocator> __g_kernel_heap_storage;
heap_allocator &g_kernel_heap = __g_kernel_heap_storage.value;
static kutil::no_construct<frame_allocator> __g_frame_allocator_storage;
frame_allocator &g_frame_allocator = __g_frame_allocator_storage.value;
static kutil::no_construct<vm_area_untracked> __g_kernel_heap_area_storage;
vm_area_untracked &g_kernel_heap_area = __g_kernel_heap_area_storage.value;
static kutil::no_construct<vm_area_guarded> __g_kernel_stacks_storage;
vm_area_guarded &g_kernel_stacks = __g_kernel_stacks_storage.value;
vm_area_guarded g_kernel_buffers {
memory::buffers_start,
memory::kernel_buffer_pages,
memory::kernel_max_buffers,
vm_flags::write};
void * operator new(size_t size) { return g_kernel_heap.allocate(size); }
void * operator new [] (size_t size) { return g_kernel_heap.allocate(size); }
void operator delete (void *p) noexcept { return g_kernel_heap.free(p); }
void operator delete [] (void *p) noexcept { return g_kernel_heap.free(p); }
void * kalloc(size_t size) { return g_kernel_heap.allocate(size); }
void kfree(void *p) { return g_kernel_heap.free(p); }
template <typename T>
uintptr_t
get_physical_page(T *p) {
return memory::page_align_down(reinterpret_cast<uintptr_t>(p));
}
void
memory_initialize_pre_ctors(init::args &kargs)
{
using kernel::init::frame_block;
page_table *kpml4 = static_cast<page_table*>(kargs.pml4);
new (&g_kernel_heap) heap_allocator {heap_start, kernel_max_heap};
frame_block *blocks = reinterpret_cast<frame_block*>(memory::bitmap_start);
new (&g_frame_allocator) frame_allocator {blocks, kargs.frame_blocks.count};
// Mark all the things the bootloader allocated for us as used
allocation_register *reg = kargs.allocations;
while (reg) {
for (auto &alloc : reg->entries)
if (alloc.type != init::allocation_type::none)
g_frame_allocator.used(alloc.address, alloc.count);
reg = reg->next;
}
process *kp = process::create_kernel_process(kpml4);
vm_space &vm = kp->space();
vm_area *heap = new (&g_kernel_heap_area)
vm_area_untracked(kernel_max_heap, vm_flags::write);
vm.add(heap_start, heap);
vm_area *stacks = new (&g_kernel_stacks) vm_area_guarded {
memory::stacks_start,
memory::kernel_stack_pages,
memory::kernel_max_stacks,
vm_flags::write};
vm.add(memory::stacks_start, &g_kernel_stacks);
// Clean out any remaning bootloader page table entries
for (unsigned i = 0; i < memory::pml4e_kernel; ++i)
kpml4->entries[i] = 0;
}
void
memory_initialize_post_ctors(init::args &kargs)
{
vm_space &vm = vm_space::kernel_space();
vm.add(memory::buffers_start, &g_kernel_buffers);
g_frame_allocator.free(
get_physical_page(kargs.page_tables.pointer),
kargs.page_tables.count);
}
static void
log_mtrrs()
{
uint64_t mtrrcap = rdmsr(msr::ia32_mtrrcap);
uint64_t mtrrdeftype = rdmsr(msr::ia32_mtrrdeftype);
unsigned vcap = mtrrcap & 0xff;
log::debug(logs::boot, "MTRRs: vcap=%d %s %s def=%02x %s %s",
vcap,
(mtrrcap & (1<< 8)) ? "fix" : "",
(mtrrcap & (1<<10)) ? "wc" : "",
mtrrdeftype & 0xff,
(mtrrdeftype & (1<<10)) ? "fe" : "",
(mtrrdeftype & (1<<11)) ? "enabled" : ""
);
for (unsigned i = 0; i < vcap; ++i) {
uint64_t base = rdmsr(find_mtrr(msr::ia32_mtrrphysbase, i));
uint64_t mask = rdmsr(find_mtrr(msr::ia32_mtrrphysmask, i));
log::debug(logs::boot, " vcap[%2d] base:%016llx mask:%016llx type:%02x %s", i,
(base & ~0xfffull),
(mask & ~0xfffull),
(base & 0xff),
(mask & (1<<11)) ? "valid" : "");
}
msr mtrr_fixed[] = {
msr::ia32_mtrrfix64k_00000,
msr::ia32_mtrrfix16k_80000,
msr::ia32_mtrrfix16k_a0000,
msr::ia32_mtrrfix4k_c0000,
msr::ia32_mtrrfix4k_c8000,
msr::ia32_mtrrfix4k_d0000,
msr::ia32_mtrrfix4k_d8000,
msr::ia32_mtrrfix4k_e0000,
msr::ia32_mtrrfix4k_e8000,
msr::ia32_mtrrfix4k_f0000,
msr::ia32_mtrrfix4k_f8000,
};
for (int i = 0; i < 11; ++i) {
uint64_t v = rdmsr(mtrr_fixed[i]);
log::debug(logs::boot, " fixed[%2d] %02x %02x %02x %02x %02x %02x %02x %02x", i,
((v << 0) & 0xff), ((v << 8) & 0xff), ((v << 16) & 0xff), ((v << 24) & 0xff),
((v << 32) & 0xff), ((v << 40) & 0xff), ((v << 48) & 0xff), ((v << 56) & 0xff));
}
uint64_t pat = rdmsr(msr::ia32_pat);
static const char *pat_names[] = {"UC ","WC ","XX ","XX ","WT ","WP ","WB ","UC-"};
log::debug(logs::boot, " PAT: 0:%s 1:%s 2:%s 3:%s 4:%s 5:%s 6:%s 7:%s",
pat_names[(pat >> (0*8)) & 7], pat_names[(pat >> (1*8)) & 7],
pat_names[(pat >> (2*8)) & 7], pat_names[(pat >> (3*8)) & 7],
pat_names[(pat >> (4*8)) & 7], pat_names[(pat >> (5*8)) & 7],
pat_names[(pat >> (6*8)) & 7], pat_names[(pat >> (7*8)) & 7]);
}
void
load_init_server(init::program &program, uintptr_t modules_address)
{
process *p = new process;
p->add_handle(&system::get());
vm_space &space = p->space();
for (const auto &sect : program.sections) {
vm_flags flags =
((sect.type && section_flags::execute) ? vm_flags::exec : vm_flags::none) |
((sect.type && section_flags::write) ? vm_flags::write : vm_flags::none);
vm_area *vma = new vm_area_fixed(sect.phys_addr, sect.size, flags);
space.add(sect.virt_addr, vma);
}
uint64_t iopl = (3ull << 12);
thread *main = p->create_thread();
main->add_thunk_user(program.entrypoint, 0, iopl);
main->set_state(thread::state::ready);
// Hacky: No process exists to have created a stack for init; it needs to create
// its own stack. We take advantage of that to use rsp to pass it the init modules
// address.
auto *tcb = main->tcb();
tcb->rsp3 = modules_address;
}