Files
jsix_import/src/libraries/kutil/heap_allocator.cpp
Justin C. Miller 94c1f0d3fc [kutil] Calculate block-size order with clz
Previously we were using a less efficient loop method of finding the
appropriate block size order, now we use __builtin_clz, which should use
the CPU's clz instruction if it's available.
2020-07-30 19:54:25 -07:00

165 lines
3.6 KiB
C++

#include <stdint.h>
#include "kutil/assert.h"
#include "kutil/memory.h"
#include "kutil/heap_allocator.h"
namespace kutil {
struct heap_allocator::mem_header
{
mem_header(mem_header *prev, mem_header *next, uint8_t order) :
m_prev(prev), m_next(next)
{
set_order(order);
}
inline void set_order(uint8_t order) {
m_prev = reinterpret_cast<mem_header *>(
reinterpret_cast<uintptr_t>(prev()) | (order & 0x3f));
}
inline void set_used(bool used) {
m_next = reinterpret_cast<mem_header *>(
reinterpret_cast<uintptr_t>(next()) | (used ? 1 : 0));
}
inline void set_next(mem_header *next) {
bool u = used();
m_next = next;
set_used(u);
}
inline void set_prev(mem_header *prev) {
uint8_t s = order();
m_prev = prev;
set_order(s);
}
void remove() {
if (next()) next()->set_prev(prev());
if (prev()) prev()->set_next(next());
set_prev(nullptr);
set_next(nullptr);
}
inline mem_header * next() { return kutil::mask_pointer(m_next, 0x3f); }
inline mem_header * prev() { return kutil::mask_pointer(m_prev, 0x3f); }
inline mem_header * buddy() const {
return reinterpret_cast<mem_header *>(
reinterpret_cast<uintptr_t>(this) ^ (1 << order()));
}
inline bool eldest() const { return this < buddy(); }
inline uint8_t order() const { return reinterpret_cast<uintptr_t>(m_prev) & 0x3f; }
inline bool used() const { return reinterpret_cast<uintptr_t>(m_next) & 0x1; }
private:
mem_header *m_prev;
mem_header *m_next;
};
heap_allocator::heap_allocator() : m_next(0), m_size(0) {}
heap_allocator::heap_allocator(uintptr_t start, size_t size) :
m_next(start), m_size(size), m_allocated_size(0)
{
kutil::memset(m_free, 0, sizeof(m_free));
}
void *
heap_allocator::allocate(size_t length)
{
size_t total = length + sizeof(mem_header);
if (length == 0)
return nullptr;
unsigned order = 64 - __builtin_clz(length);
kassert(order <= max_order, "Tried to allocate a block bigger than max_order");
if (order > max_order)
return nullptr;
mem_header *header = pop_free(order);
header->set_used(true);
m_allocated_size += (1 << order);
return header + 1;
}
void
heap_allocator::free(void *p)
{
if (!p) return;
mem_header *header = reinterpret_cast<mem_header *>(p);
header -= 1; // p points after the header
header->set_used(false);
m_allocated_size -= (1 << header->order());
while (header->order() != max_order) {
auto order = header->order();
mem_header *buddy = header->buddy();
if (buddy->used() || buddy->order() != order)
break;
if (get_free(order) == buddy)
get_free(order) = buddy->next();
buddy->remove();
header = header->eldest() ? header : buddy;
header->set_order(order + 1);
}
uint8_t order = header->order();
header->set_next(get_free(order));
get_free(order) = header;
if (header->next())
header->next()->set_prev(header);
}
void
heap_allocator::ensure_block(unsigned order)
{
if (get_free(order) != nullptr)
return;
if (order == max_order) {
size_t bytes = (1 << max_order);
if (bytes <= m_size) {
mem_header *next = reinterpret_cast<mem_header *>(m_next);
new (next) mem_header(nullptr, nullptr, order);
get_free(order) = next;
m_next += bytes;
m_size -= bytes;
}
} else {
mem_header *orig = pop_free(order + 1);
if (orig) {
mem_header *next = kutil::offset_pointer(orig, 1 << order);
new (next) mem_header(orig, nullptr, order);
orig->set_next(next);
orig->set_order(order);
get_free(order) = orig;
}
}
}
heap_allocator::mem_header *
heap_allocator::pop_free(unsigned order)
{
ensure_block(order);
mem_header *block = get_free(order);
if (block) {
get_free(order) = block->next();
block->remove();
}
return block;
}
} // namespace kutil