Files
jsix_import/src/boot/memory.cpp
2020-02-24 02:18:14 -08:00

266 lines
6.7 KiB
C++

#include <stddef.h>
#include <uefi/types.h>
#include "error.h"
#include "console.h"
#include "memory.h"
namespace boot {
namespace memory {
/*
const EFI_MEMORY_TYPE memtype_kernel = static_cast<EFI_MEMORY_TYPE>(0x80000000ul);
const EFI_MEMORY_TYPE memtype_data = static_cast<EFI_MEMORY_TYPE>(0x80000001ul);
const EFI_MEMORY_TYPE memtype_initrd = static_cast<EFI_MEMORY_TYPE>(0x80000002ul);
const EFI_MEMORY_TYPE memtype_scratch = static_cast<EFI_MEMORY_TYPE>(0x80000003ul);
#define INCREMENT_DESC(p, b) (EFI_MEMORY_DESCRIPTOR*)(((uint8_t*)(p))+(b))
*/
size_t fixup_pointer_index = 0;
void **fixup_pointers[64];
uint64_t *new_pml4 = 0;
/*
const wchar_t *memory_type_names[] = {
L"EfiReservedMemoryType",
L"EfiLoaderCode",
L"EfiLoaderData",
L"EfiBootServicesCode",
L"EfiBootServicesData",
L"EfiRuntimeServicesCode",
L"EfiRuntimeServicesData",
L"EfiConventionalMemory",
L"EfiUnusableMemory",
L"EfiACPIReclaimMemory",
L"EfiACPIMemoryNVS",
L"EfiMemoryMappedIO",
L"EfiMemoryMappedIOPortSpace",
L"EfiPalCode",
L"EfiPersistentMemory",
};
static const wchar_t *
memory_type_name(UINT32 value)
{
if (value >= (sizeof(memory_type_names) / sizeof(wchar_t *))) {
switch (value) {
case memtype_kernel: return L"Kernel Data";
case memtype_data: return L"Kernel Data";
case memtype_initrd: return L"Initial Ramdisk";
case memtype_scratch: return L"Kernel Scratch Space";
default: return L"Bad Type Value";
}
}
return memory_type_names[value];
}
*/
void
update_marked_addresses(uefi::event, void *context)
{
uefi::runtime_services *rs =
reinterpret_cast<uefi::runtime_services*>(context);
for (size_t i = 0; i < fixup_pointer_index; ++i) {
if (fixup_pointers[i])
rs->convert_pointer(0, fixup_pointers[i]);
}
}
void
init_pointer_fixup(uefi::boot_services *bs, uefi::runtime_services *rs)
{
status_line status(L"Initializing pointer virtualization event");
uefi::event event;
try_or_raise(
bs->create_event(
uefi::evt::signal_virtual_address_change,
uefi::tpl::callback,
(uefi::event_notify)&update_marked_addresses,
rs,
&event),
L"Error creating memory virtualization event");
uefi::memory_type memtype = static_cast<uefi::memory_type>(0x80000003ul);
// Reserve a page for our replacement PML4, plus some pages for the kernel to use
// as page tables while it gets started.
uintptr_t addr = 0;
try_or_raise(
bs->allocate_pages(
uefi::allocate_type::any_pages,
memtype,
64,
&addr),
L"Error allocating page table pages.");
new_pml4 = (uint64_t *)addr;
}
void
mark_pointer_fixup(void **p)
{
if (fixup_pointer_index == 0) {
const size_t count = sizeof(fixup_pointers) / sizeof(void*);
for (size_t i = 0; i < count; ++i) fixup_pointers[i] = 0;
}
fixup_pointers[fixup_pointer_index++] = p;
}
/*
void
copy_desc(EFI_MEMORY_DESCRIPTOR *src, EFI_MEMORY_DESCRIPTOR *dst, size_t len)
{
uint8_t *srcb = (uint8_t *)src;
uint8_t *dstb = (uint8_t *)dst;
uint8_t *endb = srcb + len;
while (srcb < endb)
*dstb++ = *srcb++;
}
EFI_STATUS
memory_get_map_length(EFI_BOOT_SERVICES *bootsvc, size_t *size)
{
if (size == NULL)
return EFI_INVALID_PARAMETER;
EFI_STATUS status;
size_t key, desc_size;
uint32_t desc_version;
*size = 0;
status = bootsvc->GetMemoryMap(size, 0, &key, &desc_size, &desc_version);
if (status != EFI_BUFFER_TOO_SMALL) {
CHECK_EFI_STATUS_OR_RETURN(status, "Failed to get memory map size");
}
return EFI_SUCCESS;
}
EFI_STATUS
memory_get_map(EFI_BOOT_SERVICES *bootsvc, struct memory_map *map)
{
EFI_STATUS status;
if (map == NULL)
return EFI_INVALID_PARAMETER;
size_t needs_size = 0;
status = memory_get_map_length(bootsvc, &needs_size);
if (EFI_ERROR(status)) return status;
if (map->length < needs_size)
return EFI_BUFFER_TOO_SMALL;
status = bootsvc->GetMemoryMap(&map->length, map->entries, &map->key, &map->size, &map->version);
CHECK_EFI_STATUS_OR_RETURN(status, "Failed to load memory map");
return EFI_SUCCESS;
}
EFI_STATUS
memory_dump_map(struct memory_map *map)
{
if (map == NULL)
return EFI_INVALID_PARAMETER;
const size_t count = map->length / map->size;
console::print(L"Memory map:\n");
console::print(L"\t Descriptor Count: %d (%d bytes)\n", count, map->length);
console::print(L"\t Descriptor Size: %d bytes\n", map->size);
console::print(L"\t Type offset: %d\n\n", offsetof(EFI_MEMORY_DESCRIPTOR, Type));
EFI_MEMORY_DESCRIPTOR *end = INCREMENT_DESC(map->entries, map->length);
EFI_MEMORY_DESCRIPTOR *d = map->entries;
while (d < end) {
int runtime = (d->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME;
console::print(L"%s%s ", memory_type_name(d->Type), runtime ? L"*" : L" ");
console::print(L"%lx ", d->PhysicalStart);
console::print(L"%lx ", d->VirtualStart);
console::print(L"[%4d]\n", d->NumberOfPages);
d = INCREMENT_DESC(d, map->size);
}
return EFI_SUCCESS;
}
void
memory_virtualize(EFI_RUNTIME_SERVICES *runsvc, struct memory_map *map)
{
memory_mark_pointer_fixup((void **)&runsvc);
memory_mark_pointer_fixup((void **)&map);
// Get the pointer to the start of PML4
uint64_t* cr3 = 0;
__asm__ __volatile__ ( "mov %%cr3, %0" : "=r" (cr3) );
// PML4 is indexed with bits 39:47 of the virtual address
uint64_t offset = (KERNEL_VIRT_ADDRESS >> 39) & 0x1ff;
// Double map the lower half pages that are present into the higher half
for (unsigned i = 0; i < offset; ++i) {
if (cr3[i] & 0x1)
new_pml4[i] = new_pml4[offset+i] = cr3[i];
else
new_pml4[i] = new_pml4[offset+i] = 0;
}
// Write our new PML4 pointer back to CR3
__asm__ __volatile__ ( "mov %0, %%cr3" :: "r" (new_pml4) );
EFI_MEMORY_DESCRIPTOR *end = INCREMENT_DESC(map->entries, map->length);
EFI_MEMORY_DESCRIPTOR *d = map->entries;
while (d < end) {
switch (d->Type) {
case memtype_kernel:
case memtype_data:
case memtype_initrd:
case memtype_scratch:
d->Attribute |= EFI_MEMORY_RUNTIME;
d->VirtualStart = d->PhysicalStart + KERNEL_VIRT_ADDRESS;
default:
if (d->Attribute & EFI_MEMORY_RUNTIME) {
d->VirtualStart = d->PhysicalStart + KERNEL_VIRT_ADDRESS;
}
}
d = INCREMENT_DESC(d, map->size);
}
runsvc->SetVirtualAddressMap(map->length, map->size, map->version, map->entries);
}
*/
kernel::args::header *
allocate_args_structure(uefi::boot_services *bs, size_t max_modules)
{
status_line status(L"Setting up kernel args memory");
kernel::args::header *args = nullptr;
size_t args_size =
sizeof(kernel::args::header) + // The header itself
max_modules * sizeof(kernel::args::module); // The module structures
try_or_raise(
bs->allocate_pool(
uefi::memory_type::loader_data,
args_size,
reinterpret_cast<void**>(&args)),
L"Could not allocate argument memory");
bs->set_mem(args, args_size, 0);
args->modules =
reinterpret_cast<kernel::args::module*>(args + 1);
args->num_modules = 0;
return args;
}
} // namespace boot
} // namespace memory