#include "apic.h" #include "console.h" #include "cpu.h" #include "gdt.h" #include "interrupts.h" #include "io.h" #include "log.h" #include "msr.h" #include "page_manager.h" #include "scheduler.h" #include "elf/elf.h" #include "kutil/assert.h" scheduler scheduler::s_instance(nullptr); const int stack_size = 0x1000; const uint64_t rflags_noint = 0x002; const uint64_t rflags_int = 0x202; extern "C" { void ramdisk_process_loader(); void load_process(const void *image_start, size_t bytes, process *proc, cpu_state state); }; scheduler::scheduler(lapic *apic) : m_apic(apic), m_next_pid(1) { auto *idle = m_process_allocator.pop(); uint8_t last_pri = num_priorities - 1; // The kernel idle task, also the thread we're in now idle->pid = 0; idle->ppid = 0; idle->priority = last_pri; idle->rsp = 0; // This will get set when we switch away idle->pml4 = page_manager::get_pml4(); idle->quanta = process_quanta; idle->flags = process_flags::running | process_flags::ready | process_flags::const_pri; m_runlists[last_pri].push_back(idle); m_current = idle; } void load_process(const void *image_start, size_t bytes, process *proc, cpu_state state) { // We're now in the process space for this process, allocate memory for the // process code and load it page_manager *pager = page_manager::get(); log::debug(logs::task, "Loading task! ELF: %016lx [%d]", image_start, bytes); // TODO: Handle bad images gracefully elf::elf image(image_start, bytes); kassert(image.valid(), "Invalid ELF passed to load_process"); const unsigned program_count = image.program_count(); for (unsigned i = 0; i < program_count; ++i) { const elf::program_header *header = image.program(i); if (header->type != elf::segment_type::load) continue; uintptr_t aligned = header->vaddr & ~(page_manager::page_size - 1); size_t size = (header->vaddr + header->mem_size) - aligned; size_t pages = page_manager::page_count(size); log::debug(logs::task, " Loadable segment %02u: vaddr %016lx size %016lx", i, header->vaddr, header->mem_size); log::debug(logs::task, " - aligned to: vaddr %016lx pages %d", aligned, pages); void *mapped = pager->map_pages(aligned, pages, true); kassert(mapped, "Tried to map userspace pages and failed!"); kutil::memset(mapped, 0, pages * page_manager::page_size); } const unsigned section_count = image.section_count(); for (unsigned i = 0; i < section_count; ++i) { const elf::section_header *header = image.section(i); if (header->type != elf::section_type::progbits || !bitfield_has(header->flags, elf::section_flags::alloc)) continue; log::debug(logs::task, " Loadable section %02u: vaddr %016lx size %016lx", i, header->addr, header->size); void *dest = reinterpret_cast(header->addr); const void *src = kutil::offset_pointer(image_start, header->offset); kutil::memcpy(dest, src, header->size); } state.rip = image.entrypoint(); proc->flags &= ~process_flags::loading; log::debug(logs::task, " Loaded! New process rip: %016lx", state.rip); } void scheduler::create_process(const char *name, const void *data, size_t size) { uint16_t kcs = (1 << 3) | 0; // Kernel CS is GDT entry 1, ring 0 uint16_t cs = (5 << 3) | 3; // User CS is GDT entry 5, ring 3 uint16_t kss = (2 << 3) | 0; // Kernel SS is GDT entry 2, ring 0 uint16_t ss = (4 << 3) | 3; // User SS is GDT entry 4, ring 3 // Set up the page tables - this also allocates an initial user stack page_table *pml4 = page_manager::get()->create_process_map(); // Create a one-page kernel stack space void *stack0 = kutil::malloc(stack_size); kutil::memset(stack0, 0, stack_size); // Stack grows down, point to the end void *sp0 = kutil::offset_pointer(stack0, stack_size); cpu_state *state = reinterpret_cast(sp0) - 1; // Highest state in the stack is the process' kernel stack for the loader // to iret to: state->ds = state->ss = ss; state->cs = cs; state->rflags = rflags_int; state->rip = 0; // to be filled by the loader state->user_rsp = page_manager::initial_stack; // Next state in the stack is the loader's kernel stack. The scheduler will // iret to this which will kick off the loading: cpu_state *loader_state = reinterpret_cast(sp0) - 2; loader_state->ds = loader_state->ss = kss; loader_state->cs = kcs; loader_state->rflags = rflags_noint; loader_state->rip = reinterpret_cast(ramdisk_process_loader); loader_state->user_rsp = reinterpret_cast(state); loader_state->rax = reinterpret_cast(data); loader_state->rbx = size; uint16_t pid = m_next_pid++; auto *proc = m_process_allocator.pop(); proc->pid = pid; proc->ppid = 0; // TODO proc->priority = default_priority; proc->rsp = reinterpret_cast(loader_state); proc->pml4 = pml4; proc->quanta = process_quanta; proc->flags = process_flags::running | process_flags::ready | process_flags::loading; m_runlists[default_priority].push_back(proc); loader_state->rcx = reinterpret_cast(proc); log::debug(logs::task, "Creating process %s: pid %d pri %d", name, proc->pid, proc->priority); log::debug(logs::task, " RSP0 %016lx", state); log::debug(logs::task, " PML4 %016lx", pml4); } void scheduler::start() { log::info(logs::task, "Starting scheduler."); m_tick_count = m_apic->enable_timer(isr::isrTimer, quantum_micros, false); } void scheduler::prune(uint64_t now) { // Find processes that aren't ready or aren't running and // move them to the appropriate lists. for (auto &pri_list : m_runlists) { auto *proc = pri_list.front(); while (proc) { bool running = proc->flags && process_flags::running; bool ready = proc->flags && process_flags::ready; if (running && ready) { proc = proc->next(); continue; } auto *remove = proc; proc = proc->next(); pri_list.remove(remove); if (!(remove->flags && process_flags::running)) { auto *parent = get_process_by_id(remove->ppid); if (parent && parent->wake_on_child(remove)) { m_blocked.remove(parent); m_runlists[parent->priority].push_front(parent); m_process_allocator.push(remove); } else { m_exited.push_back(remove); } } else { m_blocked.push_back(remove); } } } // Find blocked processes that are ready (possibly after waking wating // ones) and move them to the appropriate runlist. auto *proc = m_blocked.front(); while (proc) { bool ready = proc->flags && process_flags::ready; ready |= proc->wake_on_time(now); if (!ready) { proc = proc->next(); continue; } auto *remove = proc; proc = proc->next(); m_blocked.remove(remove); m_runlists[remove->priority].push_front(remove); } } uintptr_t scheduler::schedule(uintptr_t rsp0) { // TODO: lol a real clock static uint64_t now = 0; prune(++now); m_current->rsp = rsp0; m_runlists[m_current->priority].remove(m_current); if (m_current->flags && process_flags::ready) m_runlists[m_current->priority].push_back(m_current); else m_blocked.push_back(m_current); uint8_t pri = 0; while (m_runlists[pri].empty()) { ++pri; kassert(pri < num_priorities, "All runlists are empty"); } m_current = m_runlists[pri].pop_front(); rsp0 = m_current->rsp; // Set rsp0 to after the end of the about-to-be-popped cpu state tss_set_stack(0, rsp0 + sizeof(cpu_state)); wrmsr(msr::ia32_kernel_gs_base, rsp0); // Swap page tables page_table *pml4 = m_current->pml4; page_manager::set_pml4(pml4); bool loading = m_current->flags && process_flags::loading; log::debug(logs::task, "Scheduler switched to process %d, priority %d%s.", m_current->pid, m_current->priority, loading ? " (loading)" : ""); return rsp0; } uintptr_t scheduler::tick(uintptr_t rsp0) { if (--m_current->quanta == 0) { m_current->quanta = process_quanta; rsp0 = schedule(rsp0); } m_apic->reset_timer(m_tick_count); return rsp0; } process_node * scheduler::get_process_by_id(uint32_t pid) { // TODO: this needs to be a hash map for (auto *proc : m_blocked) { if (proc->pid == pid) return proc; } for (int i = 0; i < num_priorities; ++i) { for (auto *proc : m_runlists[i]) { if (proc->pid == pid) return proc; } } for (auto *proc : m_exited) { if (proc->pid == pid) return proc; } return nullptr; }