Now the init args are a linked list - this also means ld.so can use its
own plus those of the program (eg, SLP and VFS handles). __init_libj6
now adds the head of the list to its global init_args structure, and the
j6_find_init_handle function can be used to find a handle in those args
for a given proto.
This fixes situations like the logger using the wrong mailbox for the
service locator and never finding the uart driver.
ld.so will now go through all DT_NEEDED entries in the dynamic table and load and relocate
those shared libraries as well. Lazy linking of functions via the PLT is not yet supported,
all PLT entries are looked up ahead of time by ld.so.
Added an `API` macro in `j6/api.h` that expands to mark the given
declaration as a default-visible symbol. Also change `format` and
`vformat` to non-template functions, and make calls to `main`, `exit`,
and the library init functions in `_start` GOT-relative.
The `driver_main` sinature was an alternate signature for `main`
implemented with weak symbols, but it causes linking issues when not
statically linked, and drivers are going to work differently soon
anyway. Just get rid of it for now.
For the coming switch to cap/handle ref-counting being the main lifetime
determiner of objects, get rid of self handles for threads and processes
to avoid circular references. Instead, passing 0 to syscalls expecting a
thread or process handle signifies "this process/thread".
Instead of handles / capabilities having numeric ids that are only valid
for the owning process, they are now global in a system capabilities
table. This will allow for specifying capabilities in IPC that doesn't
need to be kernel-controlled.
Processes will still need to be granted access to given capabilities,
but that can become a simpler system call than the current method of
sending them through mailbox messages (and worse, having to translate
every one into a new capability like was the case before). In order to
track which handles a process has access to, a new node_set based on
node_map allows for an efficient storage and lookup of handles.
In preparation for the new mailbox IPC model, blocking threads needed an
overhaul. The `wait_on_*` and `wake_on_*` methods are gone, and the
`block()` and `wake()` calls on threads now pass a value between the
waker and the blocked thread.
As part of this change, the concept of signals on the base kobject class
was removed, along with the queue of blocked threads waiting on any
given object. Signals are now exclusively the domain of the event object
type, and the new wait_queue utility class helps manage waiting threads
when an object does actually need this functionality. In some cases (eg,
logger) an event object is used instead of the lower-level wait_queue.
Since this change has a lot of ramifications, this large commit includes
the following additional changes:
- The j6_object_wait, j6_object_wait_many, and j6_thread_pause syscalls
have been removed.
- The j6_event_clear syscall has been removed - events are "cleared" by
reading them now. A new j6_event_wait syscall has been added to read
events.
- The generic close() method on kobject has been removed.
- The on_no_handles() method on kobject now deletes the object by
default, and needs to be overridden by classes that should not be.
- The j6_system_bind_irq syscall now takes an event handle, as well as a
signal that the IRQ should set on the event. IRQs will cause a waiting
thread to be woken with the appropriate bit set.
- Threads waking due to timeout is simplified to just having a
wake_timeout() accessor that returns a timestamp.
- The new wait_queue uses util::deque, which caused the disovery of two
bugs in the deque implementation: empty deques could still have a
single array allocated and thus return true for empty(), and new
arrays getting allocated were not being zeroed first.
- Exposed a new erase() method on util::map that takes a node pointer
instead of a key, skipping lookup.
This new libc is mostly from scratch, with *printf() functions provided
by Marco Paland and Eyal Rozenberg's tiny printf library, and malloc and
friends provided by dlmalloc.
This change finally adds capabilities to handles. Included changes:
- j6_handle_t is now again 64 bits, with the highest 8 bits being a type
code, and the next highest 24 bits being the capability mask, so that
programs can check type/caps without calling the kernel.
- The definitions grammar now includes a `capabilities [ ]` section on
objects, to list what capabilities are relevant.
- j6/caps.h is auto-generated from object capability lists
- init_libj6 again sets __handle_self and __handle_sys, this is a bit
of a hack.
- A new syscall, j6_handle_list, will return the list of existing
handles owned by the calling process.
- syscall_verify.cpp.cog now actually checks that the needed
capabilities exist on handles before allowing the call.
This means the kernel now depends on libj6. I've added the macro
definition __j6kernel when building for the kernel target, so I can
remove parts with #ifdefs.
I'm a tabs guy. I like tabs, it's an elegant way to represent
indentation instead of brute-forcing it. But I have to admit that the
world seems to be going towards spaces, and tooling tends not to play
nice with tabs. So here we go, changing the whole repo to spaces since
I'm getting tired of all the inconsistent formatting.