Now that the other CPUs have been brought up, add support for scheduling
tasks on them. The scheduler now maintains separate ready/blocked lists
per CPU, and CPUs will attempt to balance load via periodic work
stealing.
Other changes as a result of this:
- The device manager no longer creates a local APIC object, but instead
just gathers relevant info from the APCI tables. Each CPU creates its
own local APIC object. This also spurred the APIC timer calibration to
become a static value, as all APICs are assumed to be symmetrical.
- Fixed a bug where the scheduler was popping the current task off of
its ready list, however the current task is never on the ready list
(except the idle task was first set up as both current and ready).
This was causing the lists to get into bad states. Now a task can only
ever be current or in a ready or blocked list.
- Got rid of the unused static process::s_processes list of all
processes, instead of trying to synchronize it via locks.
- Added spinlocks for synchronization to the scheduler and logger
objects.
Since SYSCALL/SYSRET rely on MSRs to control their function, split out
syscall_enable() into syscall_initialize() and syscall_enable(), the
latter being called on all CPUs. This affects not just syscalls but also
the kernel_to_user_trampoline.
Additionally, do away with the max syscalls, and just make a single page
of syscall pointers and name pointers. Max syscalls was fragile and
needed to be kept in sync in multiple places.
This is a minor refactor including:
- Removing old commented-out syscall_dispatch function
- Removing IA32_EFER syscall-enable flag setting (this is done by the
bootloader now)
- Moving much logging from inside process/thread syscalls to the 'task'
log area, allowing for turning the 'syscall' area down to info by
default.
There are a lot of under the hood changes here:
- Move syscalls to be a dispatch table, defined by syscalls.inc
- Don't need a full process state (push_all) in syscalls now
- In push_all, define REGS instead of using offsets
- Save TWO stack pointers as well as current saved stack pointer in TCB:
- rsp0 is the base of the kernel stack for interrupts
- rsp3 is the saved user stack from cpu_data
- Update syscall numbers in nulldrv
- Some asm-debugging enhancements to the gdb script
- fork() still not working
Previously CPU statue was passed on the stack, but the compiler is
allowed to clobber values passed to it on the stack in the SysV x86 ABI.
So now leave the state on the stack but pass a pointer to it into the
ISR functions.
Processes can now wait on signals/children/time. There is no clock
currently so "time" is just a monotonically increating tick count. Added
a SLEEP syscall to test this waiting/waking.
The syscall/sysret instructions don't swap stacks. This was bad but
passable until syscalls caused the scheduler to run, and scheduling a
task that paused due to interrupt.
Adding a new (hopefully temporary) syscall interrupt `int 0xee` to allow
me to test syscalls without stack issues before I tackle the
syscall/sysret issue.
Also implemented a basic `pause` syscall that causes the calling process
to become unready. Because nothing can wake a process yet, it never
returns.