The event object was missing any syscalls. Furthermore, kobject had an
old object_signal implementation (the syscall itself no longer exists),
which was removed. User code should only be able to set signals on
events.
Two minor issues: scheduler::prune wasn't formatted correctly, and
j6/caps.h was not using the ull prefix when shifting 64 bit numbers.
(It's doubtful an object would get more than 32 caps any time soon, but
better to be correct.)
Adding the util::deque container, implemented with the util::linked_list
of arrays of items.
Also, use the deque for a kobject's blocked thread list to maintain
order instead of a vector using remove_swap().
The syscall interface is designed to closely follow the System V amd64
calling convention, so that as much as possible, the call into the
assembly trampoline for the syscall sets up the call correctly. Before
this change, the only exception was using r10 (a caller-saved register
already) to stash the contents of rcx, which gets clobbered by the
syscall instruction. However, this only preserves registers for the
function call, as the stack is switched upon kernel entry, and
additional call frames have been added by the time the syscall gets back
into C++ land.
This change adds a new parameter to the syscall in rbx. Since rbx is
callee-saved, the syscall trampoline pushes it to the stack, and then
puts the address of the stack-passed arguments into rbx. Now that the
syscall implementations are wrapped in the _syscall_verify_* functions,
we can piggy-back on those to also set up the extra arguments from the
user stack.
Now, for any syscall with 7 or more arguments, the verify wrapper takes
the first six arguments normally, then gets a stack pointer (the rbx
value) as its 7th and final argument. It's then the job of the verify
wrapper to get the remaining arguments from that stack pointer and pass
them to the implementation function as normal arguments.
The main point of this change is to allow "global" capabilities defined
on the base object type. The example here is the clone capability on all
objects, which governs the ability to clone a handle.
Related changes in this commit:
- Renamed `kobject` to `object` as far as the syscall interface is
concerned. `kobject` is the cname, but j6_cap_kobject_clone feels
clunky.
- The above change made me realize that the "object <type>" syntax for
specifying object references was also clunky, so now it's "ref <type>"
- Having to add `.object` on everywhere to access objects in
interface.exposes or object.super was cumbersome, so those properties
now return object types directly, instead of ObjectRef.
- syscall_verify.cpp.cog now generates code to check capabilities on
handles if they're specified in the definition, even when not passing
an object to the implementation function.
This change finally adds capabilities to handles. Included changes:
- j6_handle_t is now again 64 bits, with the highest 8 bits being a type
code, and the next highest 24 bits being the capability mask, so that
programs can check type/caps without calling the kernel.
- The definitions grammar now includes a `capabilities [ ]` section on
objects, to list what capabilities are relevant.
- j6/caps.h is auto-generated from object capability lists
- init_libj6 again sets __handle_self and __handle_sys, this is a bit
of a hack.
- A new syscall, j6_handle_list, will return the list of existing
handles owned by the calling process.
- syscall_verify.cpp.cog now actually checks that the needed
capabilities exist on handles before allowing the call.
Added methods for releasing the lock held in a scoped_lock early, as
well as reacquiring it after. Useful when, eg a thread is about to block
and should not be holding the lock while blocked.
If a bip_buffer's A buffer is in the middle of being appended to, but
that append has not yet been committed, and all committed A data has
been read, the buffer would get into a bad state where m_start_r pointed
to the end of the previous A buffer, but that data is no longer
connected to either A or B. So now we make sure to check m_size_r before
considering A "done".
This commit contains a couple large, interdependent changes:
- In preparation for capability checking, the _syscall_verify_*
functions now load most handles passed in, and verify that they exist
and are of the correct type. Lists and out-handles are not converted
to objects.
- Also in preparation for capability checking, the internal
representation of handles has changed. j6_handle_t is now 32 bits, and
a new j6_cap_t (also 32 bits) is added. Handles of a process are now a
util::map<j6_handle_t, handle> where handle is a new struct containing
the id, capabilities, and object pointer.
- The kernel object definition DSL gained a few changes to support auto
generating the handle -> object conversion in the _syscall_verify_*
functions, mostly knowing the object type, and an optional "cname"
attribute on objects where their names differ from C++ code.
(Specifically vma/vm_area)
- Kernel object code and other code under kernel/objects is now in a new
obj:: namespace, because fuck you <cstdlib> for putting "system" in
the global namespace. Why even have that header then?
- Kernel object types constructed with the construct_handle helper now
have a creation_caps static member to declare what capabilities a
newly created object's handle should have.
The logger had a lot of code that was due to it being in kutil instead
of the kernel. Simplifying it a bit here in order to make the uart
logger easier and eventual paring down of the logger easier.
- Log areas are no longer hashes of their names, just an enum
- Log level settings are no longer saved in 4 bits, just a byte
- System signal updating is done in the logger now
A structure, system_config, which is dynamically defined by the
definitions/sysconf.yaml config, is now mapped into every user address
space. The kernel fills this with information about itself and the
running machine.
User programs access this through the new j6_sysconf fake syscall in
libj6.
See: Github bug #242
See: [frobozz blog post](https://jsix.dev/posts/frobozz/)
Tags:
This means the kernel now depends on libj6. I've added the macro
definition __j6kernel when building for the kernel target, so I can
remove parts with #ifdefs.
Kernel panics previously only stopped the calling core. This commit
re-implements the panic system to allow us to stop all cores on a panic.
Changes include:
- panic now sends an NMI to all cores. This means we can't control the
contents of their registers, so panic information has been moved to a
global struct, and the panicking cpu sets the pointer to that data in
its cpu_data.
- the panic_handler is now set up with mutexes to print appropriately
and only initialize objects once.
- copying _current_gsbase into the panic handler, and #including the
cpprt.cpp file (so that we can define NDEBUG and not have it try to
link the assert code back in)
- making the symbol data pointer in kargs an actual pointer again, not
an address - and carrying that through to the panic handler
- the number of cpus is now saved globally in the kernel as g_num_cpus
While bonnibel already had the concept of a manifest, which controls
what goes into the built disk image, the bootloader still had filenames
hard-coded. Now bonnibel creates a 'jsix_boot.dat' file that tells the
bootloader what it should load.
Changes include:
- Modules have two new fields: location and description. location is
their intended directory on the EFI boot volume. description is
self-explanatory, and is used in log messages.
- New class, boot::bootconfig, implements reading of jsix_boot.dat
- New header, bootproto/bootconfig.h, specifies flags used in the
manifest and jsix_boot.dat
- New python module, bonnibel/manifest.py, encapsulates reading of the
manifest and writing jsix_boot.dat
- Syntax of the manifest changed slightly, including adding flags
- Boot and Kernel target ccflags unified a bit (this was partly due to
trying to get enum_bitfields to work in boot)
- util::counted gained operator+= and new free function util::read<T>
I just can't get enum_bitfields to work in boot. The same code works in
other targets. None of the compiler options should change that. I gave
up, but I'm leaving these changes in because they do actually handle
const better.
This is a rather large commit that is widely focused on cleaning things
out of the 'junk drawer' that is src/include. Most notably, several
things that were put in there because they needed somewhere where both
the kernel, boot, and init could read them have been moved to a new lib,
'bootproto'.
- Moved kernel_args.h and init_args.h to bootproto as kernel.h and
init.h, respectively.
- Moved counted.h and pointer_manipulation.h into util, renaming the
latter to util/pointers.h.
- Created a new src/include/arch for very arch-dependent definitions,
and moved some kernel_memory.h constants like frame size, page table
entry count, etc to arch/amd64/memory.h. Also created arch/memory.h
which detects platform and includes the former.
- Got rid of kernel_memory.h entirely in favor of a new, cog-based
approach. The new definitions/memory_layout.csv lists memory regions
in descending order from the top of memory, their sizes, and whether
they are shared outside the kernel (ie, boot needs to know them). The
new header bootproto/memory.h exposes the addresses of the shared
regions, while the kernel's memory.h gains the start and size of all
the regions. Also renamed the badly-named page-offset area the linear
area.
- The python build scripts got a few new features: the ability to parse
the csv mentioned above in a new memory.py module; the ability to add
dependencies to existing source files (The list of files that I had to
pull out of the main list just to add them with the dependency on
memory.h was getting too large. So I put them back into the sources
list, and added the dependency post-hoc.); and the ability to
reference 'source_root', 'build_root', and 'module_root' variables in
.module files.
- Some utility functions that were in the kernel's memory.h got moved to
util/pointers.h and util/misc.h, and misc.h's byteswap was renamed
byteswap32 to be more specific.
Now that kutil has no kernel-specific code in it anymore, it can
actually be linked to by anything, so I'm renaming it 'util'.
Also, I've tried to unify the way that the system libraries from
src/libraries are #included using <> instead of "".
Other small change: util::bip_buffer got a spinlock to guard against
state corruption.
Continuing moving things out of kutil. The assert as implemented could
only ever work in the kernel, so remaining kutil uses of kassert have
been moved to including standard C assert instead.
Along the way, kassert was broken out into panic::panic and kassert,
and the panic.serial namespace was renamed panicking.
The moving of kernel-only code out of kutil continues. (See 042f061)
This commit moves the following:
- The heap allocator code
- memory.cpp/h which means:
- letting string.h be the right header for memset and memcpy, still
including an implementation of it for the kernel though, since
we're not linking libc to the kernel
- Changing calls to kalloc/kfree to new/delete in kutil containers
that aren't going to be merged into the kernel
- Fixing a problem with stdalign.h from libc, which was causing issues
for type_traits.
Part two of rearranging kutil code. (See 042f061) Removing unused kutil
headers:
I can imagine that avl_tree or slab_allocated may want to be returned to
at some point, but for now they're just clutter.
Part one of a series of code moves. The kutil library is not very
useful, as most of its code is kernel-specific. This was originally for
testing purposes, but that can be achieved in other ways with the
current build system. I find this mostly creates a strange division in
the kernel code.
Instead, I'm going to move everything kernel-specific to actually be in
the kernel, and replace kutil with just 'util' for generic utility code
I want to share.
This commit:
- Moves the logger into the kernel.
- Updates the 'printf' library used from mpaland/printf to
eyalroz/printf and moved it into the kernel, as it's only used by the
logger in kutil.
- Removes some other unused kutil headers from some files, to help
future code rearrangement.
Note that the (now redundant-seeming) log.cpp/h in kernel is currently
still there - these files are more about log output than the logging
system, and will get replaced once I add user-space log output.
Updated kassert to be an actual function, and used the __builtin_*
functions for location data. Updated the panic handler protocol to
include sending location data as three more parameters. Updated the
serial panic handler to display that data along with the (optional)
message.
Add a simple ELF loader to srv.init to load and start any module_program
parameters passed from the bootloader. Also creates stacks for newly
created threads.
Also update thread creation in testapp to create stacks.
This change adds a new interface DSL for specifying objects (with
methods) and interfaces (that expose objects, and optionally have their
own methods).
Significant changes:
- Add the new scripts/definitions Python module to parse the DSL
- Add the new definitions directory containing DSL definition files
- Use cog to generate syscall-related code in kernel and libj6
- Unify ordering of pointer + length pairs in interfaces
This change moves Bonnibel from a separate project into the jsix tree,
and alters the project configuration to be jsix-specific. (I stopped
using bonnibel for any other projects, so it's far easier to make it a
custom generator for jsix.) The build system now also uses actual python
code in `*.module` files to configure modules instead of TOML files.
Target configs (boot, kernel-mode, user-mode) now moved to separate TOML
files under `configs/` and can inherit from one another.
I'm a tabs guy. I like tabs, it's an elegant way to represent
indentation instead of brute-forcing it. But I have to admit that the
world seems to be going towards spaces, and tooling tends not to play
nice with tabs. So here we go, changing the whole repo to spaces since
I'm getting tired of all the inconsistent formatting.
Created the framework for using different loadable panic handlers,
loaded by the bootloader. Initial panic handler is panic.serial, which
contains its own serial driver and stacktrace code.
Other related changes:
- Asserts are now based on the NMI handler - panic handlers get
installed as the NMI interrupt handler
- Changed symbol table generation: now use nm's own demangling and
sorting, and include symbol size in the table
- Move the linker script argument out of the kernel target, and into the
kernel's specific module, so that other programs (ie, panic handlers)
can use the kernel target as well
- Some asm changes to boot.s to help GDB see stack frames - but this
might not actually be all that useful
- Renamed user_rsp to just rsp in cpu_state - everything in there is
describing the 'user' state
Resurrect the existing but unused ELF library in libraries/elf, and use
it instead of boot/elf.h for parsing ELF files in the bootloader.
Also adds a const version of offset_iterator called
const_offset_iterator.
Pull this widely-useful header out of kutil, so more things can use it.
Also replace its dependency on <type_traits> by defining our own custom
basic_types.h which contains a subset of the standard's types.
Spinlock release uses __atomic_compare_exchange_n, which overwrites the
`desired` parameter with the actual value when the compare fails. This
was causing releases to always spin when there was lock contention.
Changing the SFINAE/enable_if strategy from a type to a constexpr
function means that it can be defined in other scopes than the functions
themselves, because of function overloading. This lets us put everything
into the kutil::bitfields namespace, and make bitfields out of enums in
other namespaces. Also took the chance to clean up the implementation a
bit.
Now that the other CPUs have been brought up, add support for scheduling
tasks on them. The scheduler now maintains separate ready/blocked lists
per CPU, and CPUs will attempt to balance load via periodic work
stealing.
Other changes as a result of this:
- The device manager no longer creates a local APIC object, but instead
just gathers relevant info from the APCI tables. Each CPU creates its
own local APIC object. This also spurred the APIC timer calibration to
become a static value, as all APICs are assumed to be symmetrical.
- Fixed a bug where the scheduler was popping the current task off of
its ready list, however the current task is never on the ready list
(except the idle task was first set up as both current and ready).
This was causing the lists to get into bad states. Now a task can only
ever be current or in a ready or blocked list.
- Got rid of the unused static process::s_processes list of all
processes, instead of trying to synchronize it via locks.
- Added spinlocks for synchronization to the scheduler and logger
objects.
Update the existing but unused spinlock class to an MCS-style queue
spinlock. This is probably still a WIP but I expect it to see more use
with SMP getting further integrated.
This very large commit is mainly focused on getting the APs started and
to a state where they're waiting to have work scheduled. (Actually
scheduling on them is for another commit.)
To do this, a bunch of major changes were needed:
- Moving a lot of the CPU initialization (including for the BSP) to
init_cpu(). This includes setting up IST stacks, writing MSRs, and
creating the cpu_data structure. For the APs, this also creates and
installs the GDT and TSS, and installs the global IDT.
- Creating the AP startup code, which tries to be as position
independent as possible. It's copied from its location to 0x8000 for
AP startup, and some of it is fixed at that address. The AP startup
code jumps from real mode to long mode with paging in one swell foop.
- Adding limited IPI capability to the lapic class. This will need to
improve.
- Renaming cpu/cpu.* to cpu/cpu_id.* because it was just annoying in GDB
and really isn't anything but cpu_id anymore.
- Moved all the GDT, TSS, and IDT code into their own files and made
them classes instead of a mess of free functions.
- Got rid of bsp_cpu_data everywhere. Now always call the new
current_cpu() to get the current CPU's cpu_data.
- Device manager keeps a list of APIC ids now. This should go somewhere
else eventually, device_manager needs to be refactored away.
- Moved some more things (notably the g_kernel_stacks vma) to the
pre-constructor setup in memory_bootstrap. That whole file is in bad
need of a refactor.