I'm a tabs guy. I like tabs, it's an elegant way to represent
indentation instead of brute-forcing it. But I have to admit that the
world seems to be going towards spaces, and tooling tends not to play
nice with tabs. So here we go, changing the whole repo to spaces since
I'm getting tired of all the inconsistent formatting.
Created the framework for using different loadable panic handlers,
loaded by the bootloader. Initial panic handler is panic.serial, which
contains its own serial driver and stacktrace code.
Other related changes:
- Asserts are now based on the NMI handler - panic handlers get
installed as the NMI interrupt handler
- Changed symbol table generation: now use nm's own demangling and
sorting, and include symbol size in the table
- Move the linker script argument out of the kernel target, and into the
kernel's specific module, so that other programs (ie, panic handlers)
can use the kernel target as well
- Some asm changes to boot.s to help GDB see stack frames - but this
might not actually be all that useful
- Renamed user_rsp to just rsp in cpu_state - everything in there is
describing the 'user' state
This very large commit is mainly focused on getting the APs started and
to a state where they're waiting to have work scheduled. (Actually
scheduling on them is for another commit.)
To do this, a bunch of major changes were needed:
- Moving a lot of the CPU initialization (including for the BSP) to
init_cpu(). This includes setting up IST stacks, writing MSRs, and
creating the cpu_data structure. For the APs, this also creates and
installs the GDT and TSS, and installs the global IDT.
- Creating the AP startup code, which tries to be as position
independent as possible. It's copied from its location to 0x8000 for
AP startup, and some of it is fixed at that address. The AP startup
code jumps from real mode to long mode with paging in one swell foop.
- Adding limited IPI capability to the lapic class. This will need to
improve.
- Renaming cpu/cpu.* to cpu/cpu_id.* because it was just annoying in GDB
and really isn't anything but cpu_id anymore.
- Moved all the GDT, TSS, and IDT code into their own files and made
them classes instead of a mess of free functions.
- Got rid of bsp_cpu_data everywhere. Now always call the new
current_cpu() to get the current CPU's cpu_data.
- Device manager keeps a list of APIC ids now. This should go somewhere
else eventually, device_manager needs to be refactored away.
- Moved some more things (notably the g_kernel_stacks vma) to the
pre-constructor setup in memory_bootstrap. That whole file is in bad
need of a refactor.
We started actually running up against the page boundary for kernel
stacks and thus double-faulting on page faults from kernel space. So I
finally added IST stacks. Note that we currently just
increment/decrement the IST entry by a page when we enter the handler to
avoid clobbering on re-entry, but this means:
* these handlers need to be able to operate with only a page of stack
* kernel stacks always have to be >1 pages
* the amount of nesting possible is tied to the kernel stack size.
These seem fine for now, but we should maybe find a way to use something
besides g_kernel_stacks to set up the IST stacks if/when this becomes an
issue.
The syscall/sysret instructions don't swap stacks. This was bad but
passable until syscalls caused the scheduler to run, and scheduling a
task that paused due to interrupt.
Adding a new (hopefully temporary) syscall interrupt `int 0xee` to allow
me to test syscalls without stack issues before I tackle the
syscall/sysret issue.
Also implemented a basic `pause` syscall that causes the calling process
to become unready. Because nothing can wake a process yet, it never
returns.