Using `-fvisibility=hidden` when building the kernel, and then
`--discard-all` when stripping it, we shave almost 100KiB off of the
resulting ELF file.
Also dropped some unused symbols from the linker script, and rearranged
the sections so that the file is able to be mapped directly into memory
instead of having each section copied.
The great header shift: It didn't make sense to regenerate headers for
the same module for every target (boot/kernel/user) it appeared in. And
now that core headers are out of src/include, this was going to cause
problems for the new libc changes I've been working on. So I went back
to re-design how module headers work.
Pre-requisites:
- A module's public headers should all be available in one location, not
tied to target.
- No accidental includes. Another module should not be able to include
anything (creating an implicit dependency) from a module without
declaring an explicit dependency.
- Exception to the previous: libc's headers should be available to all,
at least for the freestanding headers.
New system:
- A new "public_headers" property of module declares all public headers
that should be available to dependant modules
- All public headers (after possible processing) are installed relative
to build/include/<module> with the same path as their source
- This also means no "include" dir in modules is necessary. If a header
should be included as <j6/types.h> then its source should be
src/libraries/j6/j6/types.h - this caused the most churn as all public
header sources moved one directory up.
- The "includes" property of a module is local only to that module now,
it does not create any implicit public interface
Other changes:
- The bonnibel concept of sources changed: instead of sources having
actions, they themselves are an instance of a (sub)class of Source,
which provides all the necessary information itself.
- Along with the above, rule names were standardized into <type>.<ext>,
eg "compile.cpp" or "parse.cog"
- cog and cogflags variables moved from per-target scope to global scope
in the build files.
- libc gained a more dynamic .module file
This is a rather large commit that is widely focused on cleaning things
out of the 'junk drawer' that is src/include. Most notably, several
things that were put in there because they needed somewhere where both
the kernel, boot, and init could read them have been moved to a new lib,
'bootproto'.
- Moved kernel_args.h and init_args.h to bootproto as kernel.h and
init.h, respectively.
- Moved counted.h and pointer_manipulation.h into util, renaming the
latter to util/pointers.h.
- Created a new src/include/arch for very arch-dependent definitions,
and moved some kernel_memory.h constants like frame size, page table
entry count, etc to arch/amd64/memory.h. Also created arch/memory.h
which detects platform and includes the former.
- Got rid of kernel_memory.h entirely in favor of a new, cog-based
approach. The new definitions/memory_layout.csv lists memory regions
in descending order from the top of memory, their sizes, and whether
they are shared outside the kernel (ie, boot needs to know them). The
new header bootproto/memory.h exposes the addresses of the shared
regions, while the kernel's memory.h gains the start and size of all
the regions. Also renamed the badly-named page-offset area the linear
area.
- The python build scripts got a few new features: the ability to parse
the csv mentioned above in a new memory.py module; the ability to add
dependencies to existing source files (The list of files that I had to
pull out of the main list just to add them with the dependency on
memory.h was getting too large. So I put them back into the sources
list, and added the dependency post-hoc.); and the ability to
reference 'source_root', 'build_root', and 'module_root' variables in
.module files.
- Some utility functions that were in the kernel's memory.h got moved to
util/pointers.h and util/misc.h, and misc.h's byteswap was renamed
byteswap32 to be more specific.
Add a simple ELF loader to srv.init to load and start any module_program
parameters passed from the bootloader. Also creates stacks for newly
created threads.
Also update thread creation in testapp to create stacks.
This change moves Bonnibel from a separate project into the jsix tree,
and alters the project configuration to be jsix-specific. (I stopped
using bonnibel for any other projects, so it's far easier to make it a
custom generator for jsix.) The build system now also uses actual python
code in `*.module` files to configure modules instead of TOML files.
Target configs (boot, kernel-mode, user-mode) now moved to separate TOML
files under `configs/` and can inherit from one another.
I'm a tabs guy. I like tabs, it's an elegant way to represent
indentation instead of brute-forcing it. But I have to admit that the
world seems to be going towards spaces, and tooling tends not to play
nice with tabs. So here we go, changing the whole repo to spaces since
I'm getting tired of all the inconsistent formatting.
Resurrect the existing but unused ELF library in libraries/elf, and use
it instead of boot/elf.h for parsing ELF files in the bootloader.
Also adds a const version of offset_iterator called
const_offset_iterator.
Pull this widely-useful header out of kutil, so more things can use it.
Also replace its dependency on <type_traits> by defining our own custom
basic_types.h which contains a subset of the standard's types.
Now any initrd file is treated like a program image and passed to the
loader to load as a process. Very rudimentary elf loading just allocates
pages, copies sections, and sets the ELF's entrypoint as the RIP to
iretq to.