Now the init args are a linked list - this also means ld.so can use its
own plus those of the program (eg, SLP and VFS handles). __init_libj6
now adds the head of the list to its global init_args structure, and the
j6_find_init_handle function can be used to find a handle in those args
for a given proto.
This fixes situations like the logger using the wrong mailbox for the
service locator and never finding the uart driver.
Now when loading a process, init will push all the loader args, align
the stack so that the next pointer will have correct alignment, then
push a pointer to the loader args.
Also:
* _ldso_start will pop all loader args off of the stack before jumping
to the loaded program's entrypoint, as if it had never run.
* The sentinel arg structures have a size instead of being all zeros, so
that they can be popped off properly when done.
Update init to use the new xoroshiro RNG to create a random load address for dynamic executables.
Also pass an address past the end of the loader in the loader_arg to use when loading dynamic
dependencies.
ld.so will now go through all DT_NEEDED entries in the dynamic table and load and relocate
those shared libraries as well. Lazy linking of functions via the PLT is not yet supported,
all PLT entries are looked up ahead of time by ld.so.
This change allows the `vma_map` and `vma_create_map` syscalls to map to
addresses other than the one specified, and therefore makes the address
parameter to those syscalls `inout` in order to return the mapped
address.
Also add the `exact` flag for specifying that mapping needs to be done
at the exact address given. If the mapping collides with another, the
new `j6_err_collision` error is returned.
The `driver_main` sinature was an alternate signature for `main`
implemented with weak symbols, but it causes linking issues when not
statically linked, and drivers are going to work differently soon
anyway. Just get rid of it for now.
Bonnibel will now build dynamic libraries when they're dependencies for
non-statically linked modules. It will also copy those shared libraries
into the initrd image for programs being copied into the image.
This commit includes a number of changes to enable loading of PIE
executables:
- The loader in srv.init checks for a `PT_INTERP` segment in the program
its loading, and if it exists, loads the specified interpreter and
passes control to it instead of the program itself.
- Added ld.so the dynamic linker executable and set it as the
interpreter for all user-target programs.
- Program initial stack changed again to now contain a number of
possible tagged structures, including a new one for ld.so's arguments,
and for passing handles tagged with protocol ids.
- Added a stub for a new VFS protocol. Unused so far, but srv.init will
need to serve VFS requests from ld.so once I transition libraries to
shared libs for user-target programs. (Right now all executables are
PIE but statically linked, so they only need internal relocations.)
- Added 16 and 8 bit variants of `util::bitset`. This ended up not being
used, but could be useful.
Going back to letting mailboxes use variable-length data. Note that this
requires extra copies, so shared memory channels should be used for
anything in the hot path. But this allows better RPC over mailboxes and
other flexibility.
Other changes:
- added a j6::proto::sl::client class to act as a service locator
client, instead of duplicating that code in every program.
- moved protocol ids into j6/tables/protocols.inc so that C++ clients
can easily have their own API
In order to allow -fpic and -fpie in the user target, move init to it's
own target -- it needs its own special build rules to make it loadable
by boot.
This was kept in the kernel as a way to keep exercising the code, but it
doesn't belong there. This moves it to init, which doesn't do anything
but probe for devices currently - but at least it's executing the code
in userspace now.
init still uses a custom _start to set up the stack, but then jumps to
_libc_crt0_start. The modules data passed to it is taken from the
j6_init_args instead of having it stashed into a global variable.
Also replace several uses of snprintf/j6_log with j6::syslog.
In order to pass along arguments like the framebuffer, it's far simpler
to have that data stored along with the modules than mapping new pages
for every structure. Also now optionally pass a module's data to a
driver as init starts it.
This commit changes the add_user_thunk to point to a new routine,
initialize_user_cpu, which sets all the registers that were previously
unset when starting a new user thread. The values for rdi and rsi are
popped off the initial stack values that add_user_thunk sets up, so that
user thread procs can take up to two arguments.
To suppor this, j6_thread_create gained two new arguments, which are
passed on to the thread.
This also let me finally get rid of the hack of passing an argument in
rsp when starting init.
Previously we were hard-coding loading specific files (the UART driver
and logging server) from the initrd. Now j6romfs has a for_each() method
to allow iterating all files in a directory, and init loads all programs
from /jsix/drivers and /jsix/services. Eventually this will need more
dynamic loading decisions for drivers but for now it's fine.
Restructuring paging into an object that carries its page cache with it
and makes for simpler code. Program loading is also changed to not copy
the pages loaded from the file into new pages - we can impose a new
constraint that anything loaded by boot have a simple, page-aligned
layout so that we can just map the existing pages into the right
addresses. Also included are some linker script changes to help
accommodate this.
The symbol table needs to be passed to the panic handler very early in
the kernel, loading it in init is far less useful. Return it to the boot
directory and remove it from the initrd.
Load drv.uart.elf and srv.logger.elf from the initrd and start them.
It's extremely manual and hard-coded at the moment, but it works and
they run, getting us back to where we were pre-initrd branch.
The initrd image is now created by the build system, loaded by the
bootloader, and passed to srv.init, which loads it (but doesn't do
anything with it yet, so this is actually a functional regression).
This simplifies a lot of the modules code between boot and init as well:
Gone are the many subclasses of module and all the data being inline
with the module structs, except for any loaded files. Now the only
modules loaded and passed will be the initrd, and any devices only the
bootloader has knowledge of, like the UEFI framebuffer.
A new compressed initrd format for srv.init to load drivers, services,
and data from, instead of every file getting loaded by the bootloader.
This will allow for less memory allocated by the bootloader and passed
to init if not every driver or data file is loaded.
Loading, passing, and using the new initrd will be done in a coming
commit.
A number of simplifications of mailboxes now that the interface is much
simpler, and synchronous.
* call and respond can now only transfer one handle at a time
* mailbox objects got rid of the message queue, and just have
wait_queues of blocked threads, and a reply_to map.
* threads now have a message_data struct on them for use by mailboxes
Instead of handles / capabilities having numeric ids that are only valid
for the owning process, they are now global in a system capabilities
table. This will allow for specifying capabilities in IPC that doesn't
need to be kernel-controlled.
Processes will still need to be granted access to given capabilities,
but that can become a simpler system call than the current method of
sending them through mailbox messages (and worse, having to translate
every one into a new capability like was the case before). In order to
track which handles a process has access to, a new node_set based on
node_map allows for an efficient storage and lookup of handles.
The init process now serves as a service locator for its children,
passing all children a mailbox handle on which it is serving the service
locator protocol.
In preparation for the new mailbox IPC model, blocking threads needed an
overhaul. The `wait_on_*` and `wake_on_*` methods are gone, and the
`block()` and `wake()` calls on threads now pass a value between the
waker and the blocked thread.
As part of this change, the concept of signals on the base kobject class
was removed, along with the queue of blocked threads waiting on any
given object. Signals are now exclusively the domain of the event object
type, and the new wait_queue utility class helps manage waiting threads
when an object does actually need this functionality. In some cases (eg,
logger) an event object is used instead of the lower-level wait_queue.
Since this change has a lot of ramifications, this large commit includes
the following additional changes:
- The j6_object_wait, j6_object_wait_many, and j6_thread_pause syscalls
have been removed.
- The j6_event_clear syscall has been removed - events are "cleared" by
reading them now. A new j6_event_wait syscall has been added to read
events.
- The generic close() method on kobject has been removed.
- The on_no_handles() method on kobject now deletes the object by
default, and needs to be overridden by classes that should not be.
- The j6_system_bind_irq syscall now takes an event handle, as well as a
signal that the IRQ should set on the event. IRQs will cause a waiting
thread to be woken with the appropriate bit set.
- Threads waking due to timeout is simplified to just having a
wake_timeout() accessor that returns a timestamp.
- The new wait_queue uses util::deque, which caused the disovery of two
bugs in the deque implementation: empty deques could still have a
single array allocated and thus return true for empty(), and new
arrays getting allocated were not being zeroed first.
- Exposed a new erase() method on util::map that takes a node pointer
instead of a key, skipping lookup.
Another issue related to the bug fix in 3be4b10 - if the segment is
non-aligned, the size of the VMA needs to be seg.mem_size + the prologue
size.
Also renamed the variables from prelude/prologue to prologue/epilogue;
it must have been late at night that I wrote that...
The drv.uart ELF currently ends up with a segment vaddr starting at
0x215010, which includes .data and .bss. The old loader was mishandling
this in a few ways:
- Not zeroing out the leading 16 bytes, or the trailing .bss section
- Copying the segment data to the start of the page, so it was offset by
-16 bytes.
- Mapping the VMA into the child program at the non-page-aligned
address, which causes all sorts of trouble.
This has always been on the todo list, but it finally bit me. srv.init
re-uses load addresses when loading multiple programs, and collision
between reused addresses was causing corruption without the TLB flush.
Now srv.init also doesn't increment its load address for sections when
loading a single program either, since unmapping pages actually works.
This new libc is mostly from scratch, with *printf() functions provided
by Marco Paland and Eyal Rozenberg's tiny printf library, and malloc and
friends provided by dlmalloc.
Added the handle_clone syscall which allows for cloning a handle with
a subset of the original handle's capabilities.
Related changes:
- srv.init now calls handle_clone on its system handle, and load_program
was changed to allow this second system handle to be passed to loaded
programs instead. However, as drv.uart is still a driver AND a log
reader, this new handle is not actually passed yet.
- The definition parser was using a set for the cap list, which meant
the order (and thus values) of caps was not static.
- Some code in objects/handle.h was made more explicit about what bits
meant what.
This change finally adds capabilities to handles. Included changes:
- j6_handle_t is now again 64 bits, with the highest 8 bits being a type
code, and the next highest 24 bits being the capability mask, so that
programs can check type/caps without calling the kernel.
- The definitions grammar now includes a `capabilities [ ]` section on
objects, to list what capabilities are relevant.
- j6/caps.h is auto-generated from object capability lists
- init_libj6 again sets __handle_self and __handle_sys, this is a bit
of a hack.
- A new syscall, j6_handle_list, will return the list of existing
handles owned by the calling process.
- syscall_verify.cpp.cog now actually checks that the needed
capabilities exist on handles before allowing the call.
First attempt at a UART driver. I'm not sure it's the most stable. Now
that userspace is handling displaying logs, also removed serial and log
output support from the kernel.
While bonnibel already had the concept of a manifest, which controls
what goes into the built disk image, the bootloader still had filenames
hard-coded. Now bonnibel creates a 'jsix_boot.dat' file that tells the
bootloader what it should load.
Changes include:
- Modules have two new fields: location and description. location is
their intended directory on the EFI boot volume. description is
self-explanatory, and is used in log messages.
- New class, boot::bootconfig, implements reading of jsix_boot.dat
- New header, bootproto/bootconfig.h, specifies flags used in the
manifest and jsix_boot.dat
- New python module, bonnibel/manifest.py, encapsulates reading of the
manifest and writing jsix_boot.dat
- Syntax of the manifest changed slightly, including adding flags
- Boot and Kernel target ccflags unified a bit (this was partly due to
trying to get enum_bitfields to work in boot)
- util::counted gained operator+= and new free function util::read<T>
This is a rather large commit that is widely focused on cleaning things
out of the 'junk drawer' that is src/include. Most notably, several
things that were put in there because they needed somewhere where both
the kernel, boot, and init could read them have been moved to a new lib,
'bootproto'.
- Moved kernel_args.h and init_args.h to bootproto as kernel.h and
init.h, respectively.
- Moved counted.h and pointer_manipulation.h into util, renaming the
latter to util/pointers.h.
- Created a new src/include/arch for very arch-dependent definitions,
and moved some kernel_memory.h constants like frame size, page table
entry count, etc to arch/amd64/memory.h. Also created arch/memory.h
which detects platform and includes the former.
- Got rid of kernel_memory.h entirely in favor of a new, cog-based
approach. The new definitions/memory_layout.csv lists memory regions
in descending order from the top of memory, their sizes, and whether
they are shared outside the kernel (ie, boot needs to know them). The
new header bootproto/memory.h exposes the addresses of the shared
regions, while the kernel's memory.h gains the start and size of all
the regions. Also renamed the badly-named page-offset area the linear
area.
- The python build scripts got a few new features: the ability to parse
the csv mentioned above in a new memory.py module; the ability to add
dependencies to existing source files (The list of files that I had to
pull out of the main list just to add them with the dependency on
memory.h was getting too large. So I put them back into the sources
list, and added the dependency post-hoc.); and the ability to
reference 'source_root', 'build_root', and 'module_root' variables in
.module files.
- Some utility functions that were in the kernel's memory.h got moved to
util/pointers.h and util/misc.h, and misc.h's byteswap was renamed
byteswap32 to be more specific.
Now that kutil has no kernel-specific code in it anymore, it can
actually be linked to by anything, so I'm renaming it 'util'.
Also, I've tried to unify the way that the system libraries from
src/libraries are #included using <> instead of "".
Other small change: util::bip_buffer got a spinlock to guard against
state corruption.
Add a simple ELF loader to srv.init to load and start any module_program
parameters passed from the bootloader. Also creates stacks for newly
created threads.
Also update thread creation in testapp to create stacks.
This change adds a new interface DSL for specifying objects (with
methods) and interfaces (that expose objects, and optionally have their
own methods).
Significant changes:
- Add the new scripts/definitions Python module to parse the DSL
- Add the new definitions directory containing DSL definition files
- Use cog to generate syscall-related code in kernel and libj6
- Unify ordering of pointer + length pairs in interfaces
This change moves Bonnibel from a separate project into the jsix tree,
and alters the project configuration to be jsix-specific. (I stopped
using bonnibel for any other projects, so it's far easier to make it a
custom generator for jsix.) The build system now also uses actual python
code in `*.module` files to configure modules instead of TOML files.
Target configs (boot, kernel-mode, user-mode) now moved to separate TOML
files under `configs/` and can inherit from one another.
I'm a tabs guy. I like tabs, it's an elegant way to represent
indentation instead of brute-forcing it. But I have to admit that the
world seems to be going towards spaces, and tooling tends not to play
nice with tabs. So here we go, changing the whole repo to spaces since
I'm getting tired of all the inconsistent formatting.
Create a new usermode program, srv.init, and have it read the initial
module_page args sent to it by the bootloader. Doesn't yet do anything
useful but sets up the way for loading the rest of the programs from
srv.init.
Other (mostly) related changes:
- bootloader: The allocator now has a function for allocating init
modules out of a modules_page slab. Also changed how the allocator is
initialized and passes the allocation register and modules_page list
to efi_main().
- bootloader: Expose the simple wstrlen() to the rest of the program
- bootloader: Move check_cpu_supported() to hardware.cpp
- bootloader: Moved program_desc to loader.h and made the loader
functions take it as an argument instead of paths.
- kernel: Rename the system_map_mmio syscall to system_map_phys, and
stop having it default those VMAs to having the vm_flags::mmio flag.
Added a new flag mask, vm_flags::driver_mask, so that drivers can be
allowed to ask for the MMIO flag.
- kernel: Rename load_simple_process() to load_init_server() and got rid
of all the stack setup routines in memory_bootstrap.cpp and task.s
- Fixed formatting in config/debug.toml, undefined __linux and other
linux-specific defines, and got rid of _LIBCPP_HAS_THREAD_API_EXTERNAL
because that's just not true.