The great header shift: It didn't make sense to regenerate headers for
the same module for every target (boot/kernel/user) it appeared in. And
now that core headers are out of src/include, this was going to cause
problems for the new libc changes I've been working on. So I went back
to re-design how module headers work.
Pre-requisites:
- A module's public headers should all be available in one location, not
tied to target.
- No accidental includes. Another module should not be able to include
anything (creating an implicit dependency) from a module without
declaring an explicit dependency.
- Exception to the previous: libc's headers should be available to all,
at least for the freestanding headers.
New system:
- A new "public_headers" property of module declares all public headers
that should be available to dependant modules
- All public headers (after possible processing) are installed relative
to build/include/<module> with the same path as their source
- This also means no "include" dir in modules is necessary. If a header
should be included as <j6/types.h> then its source should be
src/libraries/j6/j6/types.h - this caused the most churn as all public
header sources moved one directory up.
- The "includes" property of a module is local only to that module now,
it does not create any implicit public interface
Other changes:
- The bonnibel concept of sources changed: instead of sources having
actions, they themselves are an instance of a (sub)class of Source,
which provides all the necessary information itself.
- Along with the above, rule names were standardized into <type>.<ext>,
eg "compile.cpp" or "parse.cog"
- cog and cogflags variables moved from per-target scope to global scope
in the build files.
- libc gained a more dynamic .module file
This change finally adds capabilities to handles. Included changes:
- j6_handle_t is now again 64 bits, with the highest 8 bits being a type
code, and the next highest 24 bits being the capability mask, so that
programs can check type/caps without calling the kernel.
- The definitions grammar now includes a `capabilities [ ]` section on
objects, to list what capabilities are relevant.
- j6/caps.h is auto-generated from object capability lists
- init_libj6 again sets __handle_self and __handle_sys, this is a bit
of a hack.
- A new syscall, j6_handle_list, will return the list of existing
handles owned by the calling process.
- syscall_verify.cpp.cog now actually checks that the needed
capabilities exist on handles before allowing the call.
A structure, system_config, which is dynamically defined by the
definitions/sysconf.yaml config, is now mapped into every user address
space. The kernel fills this with information about itself and the
running machine.
User programs access this through the new j6_sysconf fake syscall in
libj6.
See: Github bug #242
See: [frobozz blog post](https://jsix.dev/posts/frobozz/)
Tags:
This means the kernel now depends on libj6. I've added the macro
definition __j6kernel when building for the kernel target, so I can
remove parts with #ifdefs.
This change adds a new interface DSL for specifying objects (with
methods) and interfaces (that expose objects, and optionally have their
own methods).
Significant changes:
- Add the new scripts/definitions Python module to parse the DSL
- Add the new definitions directory containing DSL definition files
- Use cog to generate syscall-related code in kernel and libj6
- Unify ordering of pointer + length pairs in interfaces
This change moves Bonnibel from a separate project into the jsix tree,
and alters the project configuration to be jsix-specific. (I stopped
using bonnibel for any other projects, so it's far easier to make it a
custom generator for jsix.) The build system now also uses actual python
code in `*.module` files to configure modules instead of TOML files.
Target configs (boot, kernel-mode, user-mode) now moved to separate TOML
files under `configs/` and can inherit from one another.