The manifest can now supply a list of boot flags, including "test".
Those get turned into the bootproto::args::flags field by the
bootloader. The kernel takes those and uses the test flag to control
enabling syscalls with the new "test" attribute, like the new
test_finish syscall, which lets automated tests call back to the kernel
to shut down the system.
The last line of the boot output was always getting cut off by anything
else getting printed to the serial port. Adding two newlines to clear
the cursor of the previous output.
The last commit was a bandaid, but this needed a real fix. Now we create
a .parse_deps.phony file in every module build dir that implicitly
depends on that module's dependencies' .parse_deps.phony files, as well
as order-only depends on any cog-parsed output for that module. This
causes the cog files to get generated first if they never have been, but
still leaves real header dependency tracking to clang's depfile
generation.
Kernel panics previously only stopped the calling core. This commit
re-implements the panic system to allow us to stop all cores on a panic.
Changes include:
- panic now sends an NMI to all cores. This means we can't control the
contents of their registers, so panic information has been moved to a
global struct, and the panicking cpu sets the pointer to that data in
its cpu_data.
- the panic_handler is now set up with mutexes to print appropriately
and only initialize objects once.
- copying _current_gsbase into the panic handler, and #including the
cpprt.cpp file (so that we can define NDEBUG and not have it try to
link the assert code back in)
- making the symbol data pointer in kargs an actual pointer again, not
an address - and carrying that through to the panic handler
- the number of cpus is now saved globally in the kernel as g_num_cpus
While bonnibel already had the concept of a manifest, which controls
what goes into the built disk image, the bootloader still had filenames
hard-coded. Now bonnibel creates a 'jsix_boot.dat' file that tells the
bootloader what it should load.
Changes include:
- Modules have two new fields: location and description. location is
their intended directory on the EFI boot volume. description is
self-explanatory, and is used in log messages.
- New class, boot::bootconfig, implements reading of jsix_boot.dat
- New header, bootproto/bootconfig.h, specifies flags used in the
manifest and jsix_boot.dat
- New python module, bonnibel/manifest.py, encapsulates reading of the
manifest and writing jsix_boot.dat
- Syntax of the manifest changed slightly, including adding flags
- Boot and Kernel target ccflags unified a bit (this was partly due to
trying to get enum_bitfields to work in boot)
- util::counted gained operator+= and new free function util::read<T>
This is a rather large commit that is widely focused on cleaning things
out of the 'junk drawer' that is src/include. Most notably, several
things that were put in there because they needed somewhere where both
the kernel, boot, and init could read them have been moved to a new lib,
'bootproto'.
- Moved kernel_args.h and init_args.h to bootproto as kernel.h and
init.h, respectively.
- Moved counted.h and pointer_manipulation.h into util, renaming the
latter to util/pointers.h.
- Created a new src/include/arch for very arch-dependent definitions,
and moved some kernel_memory.h constants like frame size, page table
entry count, etc to arch/amd64/memory.h. Also created arch/memory.h
which detects platform and includes the former.
- Got rid of kernel_memory.h entirely in favor of a new, cog-based
approach. The new definitions/memory_layout.csv lists memory regions
in descending order from the top of memory, their sizes, and whether
they are shared outside the kernel (ie, boot needs to know them). The
new header bootproto/memory.h exposes the addresses of the shared
regions, while the kernel's memory.h gains the start and size of all
the regions. Also renamed the badly-named page-offset area the linear
area.
- The python build scripts got a few new features: the ability to parse
the csv mentioned above in a new memory.py module; the ability to add
dependencies to existing source files (The list of files that I had to
pull out of the main list just to add them with the dependency on
memory.h was getting too large. So I put them back into the sources
list, and added the dependency post-hoc.); and the ability to
reference 'source_root', 'build_root', and 'module_root' variables in
.module files.
- Some utility functions that were in the kernel's memory.h got moved to
util/pointers.h and util/misc.h, and misc.h's byteswap was renamed
byteswap32 to be more specific.
Now that kutil has no kernel-specific code in it anymore, it can
actually be linked to by anything, so I'm renaming it 'util'.
Also, I've tried to unify the way that the system libraries from
src/libraries are #included using <> instead of "".
Other small change: util::bip_buffer got a spinlock to guard against
state corruption.
This change moves Bonnibel from a separate project into the jsix tree,
and alters the project configuration to be jsix-specific. (I stopped
using bonnibel for any other projects, so it's far easier to make it a
custom generator for jsix.) The build system now also uses actual python
code in `*.module` files to configure modules instead of TOML files.
Target configs (boot, kernel-mode, user-mode) now moved to separate TOML
files under `configs/` and can inherit from one another.
I'm a tabs guy. I like tabs, it's an elegant way to represent
indentation instead of brute-forcing it. But I have to admit that the
world seems to be going towards spaces, and tooling tends not to play
nice with tabs. So here we go, changing the whole repo to spaces since
I'm getting tired of all the inconsistent formatting.
Created the framework for using different loadable panic handlers,
loaded by the bootloader. Initial panic handler is panic.serial, which
contains its own serial driver and stacktrace code.
Other related changes:
- Asserts are now based on the NMI handler - panic handlers get
installed as the NMI interrupt handler
- Changed symbol table generation: now use nm's own demangling and
sorting, and include symbol size in the table
- Move the linker script argument out of the kernel target, and into the
kernel's specific module, so that other programs (ie, panic handlers)
can use the kernel target as well
- Some asm changes to boot.s to help GDB see stack frames - but this
might not actually be all that useful
- Renamed user_rsp to just rsp in cpu_state - everything in there is
describing the 'user' state
Resurrect the existing but unused ELF library in libraries/elf, and use
it instead of boot/elf.h for parsing ELF files in the bootloader.
Also adds a const version of offset_iterator called
const_offset_iterator.
Create a new usermode program, srv.init, and have it read the initial
module_page args sent to it by the bootloader. Doesn't yet do anything
useful but sets up the way for loading the rest of the programs from
srv.init.
Other (mostly) related changes:
- bootloader: The allocator now has a function for allocating init
modules out of a modules_page slab. Also changed how the allocator is
initialized and passes the allocation register and modules_page list
to efi_main().
- bootloader: Expose the simple wstrlen() to the rest of the program
- bootloader: Move check_cpu_supported() to hardware.cpp
- bootloader: Moved program_desc to loader.h and made the loader
functions take it as an argument instead of paths.
- kernel: Rename the system_map_mmio syscall to system_map_phys, and
stop having it default those VMAs to having the vm_flags::mmio flag.
Added a new flag mask, vm_flags::driver_mask, so that drivers can be
allowed to ask for the MMIO flag.
- kernel: Rename load_simple_process() to load_init_server() and got rid
of all the stack setup routines in memory_bootstrap.cpp and task.s
- Fixed formatting in config/debug.toml, undefined __linux and other
linux-specific defines, and got rid of _LIBCPP_HAS_THREAD_API_EXTERNAL
because that's just not true.
Separate the video mode setting out from the console code into video.*,
and remove the framebuffer from the kernel args, moving it to the new
init args format.
A long overdue cleanup of the src/ tree.
- Moved src/drivers to src/user because it contains more than drivers
- Removed src/drivers/ahci because it's unused - will restore it when I
make a real AHCI driver
- Removed unused src/tools
- Moved kernel.ld (the only used file under src/arch) to src/kernel for
now, if/when there's a multi-platform effort that should be figured
out as part of it
- Removed the rest of the unused src/arch
- Renamed 'fb' to 'drv.uefi_fb' and 'nulldrv' to 'testapp'
The bootloader's load_program was reproducing all loadable program
header sections into new pages. Now only do that for sections containing
BSS sections (eg, where file size and mem size do not match).
The bootloader relied on the kernel to know which parts of memory to not
allocate over. For the future shift of having the init process load
other processes instead of the kernel, the bootloader needs a mechanism
to just hand the kernel a list of allocations. This is now done through
the new bootloader allocator, which all allocation goes through. Pool
memory will not be tracked, and so can be overwritten - this means the
args structure and its other structures like programs need to be handled
right away, or copied by the kernel.
- Add bootloader allocator
- Implement a new linked-list based set of pages that act as allocation
registers
- Allow for operator new in the bootloader, which goes through the
global allocator for pool memory
- Split memory map and frame accouting code in the bootloader into
separate memory_map.* files
- Remove many includes that could be replaced by forward declaration in
the bootloader
- Add a new global template type, `counted`, which replaces the
bootloader's `buffer` type, and updated kernel args structure to use it.
- Move bootloader's pointer_manipulation.h to the global include dir
- Make offset_iterator try to return references instead of pointers to
make it more consistent with static array iteration
- Implement a stub atexit() in the bootloader to satisfy clang
The kernel's file header has not been verified for a long time. This
change returns file verification to the bootloader to make sure the ELF
loaded in position 0 is actually the kernel.
The kernel::args namespace is really the protocol for initializing the
kernel from the bootloader. Also, the header struct in that namespace
isn't actually a header, but a collection of parameters. This change
renames the namespace to kernel::init and the struct to args.
More and more places in the kernel init code are taking addresses from
the bootloader and translating them to offset-mapped addresses. The
bootloader can do this, so it should.
This very large commit is mainly focused on getting the APs started and
to a state where they're waiting to have work scheduled. (Actually
scheduling on them is for another commit.)
To do this, a bunch of major changes were needed:
- Moving a lot of the CPU initialization (including for the BSP) to
init_cpu(). This includes setting up IST stacks, writing MSRs, and
creating the cpu_data structure. For the APs, this also creates and
installs the GDT and TSS, and installs the global IDT.
- Creating the AP startup code, which tries to be as position
independent as possible. It's copied from its location to 0x8000 for
AP startup, and some of it is fixed at that address. The AP startup
code jumps from real mode to long mode with paging in one swell foop.
- Adding limited IPI capability to the lapic class. This will need to
improve.
- Renaming cpu/cpu.* to cpu/cpu_id.* because it was just annoying in GDB
and really isn't anything but cpu_id anymore.
- Moved all the GDT, TSS, and IDT code into their own files and made
them classes instead of a mess of free functions.
- Got rid of bsp_cpu_data everywhere. Now always call the new
current_cpu() to get the current CPU's cpu_data.
- Device manager keeps a list of APIC ids now. This should go somewhere
else eventually, device_manager needs to be refactored away.
- Moved some more things (notably the g_kernel_stacks vma) to the
pre-constructor setup in memory_bootstrap. That whole file is in bad
need of a refactor.
This makes the job of the kernel easier when marking module pages as
used in the frame allocator. This will also help when sending modules
over to the init process.
The previous frame allocator involved a lot of splitting and merging
linked lists and lost all information about frames while they were
allocated. The new allocator is based on an array of descriptor
structures and a bitmap. Each memory map region of allocatable memory
becomes one or more descriptors, each mapping up to 1GiB of physical
memory. The descriptors implement two levels of a bitmap tree, and have
a pointer into the large contiguous bitmap to track individual pages.
To enable setting sections as NX or read-only, the boot program loader
now loads programs as lists of sections, and the kernel args are updated
accordingly. The kernel's loader now just takes a program pointer to
iterate the sections. Also enable NX in IA32_EFER in the bootloader.
In order to allow the bootloader to do preliminary CPUID validation
while UEFI is still handling displaying information to the user, split
most of the kernel's CPUID handling into a library to be used by both
kernel and boot.
Several changes were needed to make this work:
- Update the page_table::flags to understand memory caching types
- Set up the PAT MSR to add the WC option
- Make page-offset area mapped as WT
- Add all the MTRR and PAT MSRs, and log the MTRRs for verification
- Add a vm_area flag for write_combining
Scanline size can differ from horizontal resolution in some
framebuffers. This isn't currently handled, but at least log it so
it's visible if this lack of handling is a potential error.
The UEFI spec specifically calls out memory types with the high bit set
as being available for OS loaders' custom use. However, it seems many
UEFI firmware implementations don't handle this well. (Virtualbox, and
the firmware on my Intel NUC and Dell XPS laptop to name a few.)
So sadly since we can't rely on this feature of UEFI in all cases, we
can't use it at all. Instead, treat _all_ memory tagged as EfiLoaderData
as possibly containing data that's been passed to the OS by the
bootloader and don't free it yet.
This will need to be followed up with a change that copies anything we
need to save and frees this memory.
See: https://github.com/kiznit/rainbow-os/blob/master/boot/machine/efi/README.md
The UEFI spec specifically calls out memory types with the high bit set
as being available for OS loaders' custom use. However, it seems many
UEFI firmware implementations don't handle this well. (Virtualbox, and
the firmware on my Intel NUC and Dell XPS laptop to name a few.)
So sadly since we can't rely on this feature of UEFI in all cases, we
can't use it at all. Instead, treat _all_ memory tagged as EfiLoaderData
as possibly containing data that's been passed to the OS by the
bootloader and don't free it yet.
This will need to be followed up with a change that copies anything we
need to save and frees this memory.
See: https://github.com/kiznit/rainbow-os/blob/master/boot/machine/efi/README.md
After exiting UEFI, the bootloader had no way of displaying status to
the user. Now it will display a series of small boxes as a progress bar
along the bottom of the screen if a framebuffer exists. Errors or
warnings during a step will cause that step's box to turn red or orange,
and display bars above it to signal the error code.
This caused the simplification of the error handling system (which was
mostly just calling status_line::fail) and added different types of
status objects.
Now that the ELF loader is known to be working correctly, remove its
extra print statements about section loading to keep the bootloader
output to one screen.
If there's no video, do as we did before, otherwise route logs to the fb
driver instead. (Need to clean this up to just have a log consumer
general interface?) Also added a "scrollback" class to fb driver and
updated the system_get_log syscall.
Moved old PSF parsing code from kernel, and switched to embedding whole
PSF instead of just glyph data to make font class the same code paths
for both cases.
Create a new framebuffer driver. Also hackily passing frame buffer size
in the list of init handles to all processes and mapping the framebuffer
into all processes. Changed bootloader passing frame buffer as a module
to its own struct.
- Add a tag field to all endpoint messages, which doubles as a
notification field
- Add a endpoint_bind_irq syscall to enable an endpoint to listen for
interrupt notifications. This mechanism needs to change.
- Add a temporary copy of the serial port code to nulldrv, and let it
take responsibility for COM2
Remove ELF and initrd loading from the kernel. The bootloader now loads
the initial programs, as it does with the kernel. Other files that were
in the initrd are now on the ESP, and non-program files are just passed
as modules.
Process PML4s all point their high (kernelspace) entries at the same set
of PDs, but that copying only happens on process creation. New PDs added
to the kernel PML4 won't get shared among other PML4s. This change
instantiates empty PDs for all PML4 entries in the higher half to make
sure this can't happen.
When loading ELF headers (as opposed to sections), the `file_size` of
the data may be smaller than the `mem_size` of the section to be loaded
in memory. Don't blindly copy `mem_size` bytes from the ELF file, but
instead only `file_size`, then zero the rest.
Tags: elf loader
There were a few lingering bugs due to places where 510/511 were
hard-coded as the kernel-space PML4 entries. These are now constants
defined in kernel_memory.h instead.
Tags: boot memory paging
The bootloader was previously just passing the memory map as a module,
but the memory map is important enough to want a direct pointer, instead
of having to search the modules.