Separate the video mode setting out from the console code into video.*,
and remove the framebuffer from the kernel args, moving it to the new
init args format.
The bootloader relied on the kernel to know which parts of memory to not
allocate over. For the future shift of having the init process load
other processes instead of the kernel, the bootloader needs a mechanism
to just hand the kernel a list of allocations. This is now done through
the new bootloader allocator, which all allocation goes through. Pool
memory will not be tracked, and so can be overwritten - this means the
args structure and its other structures like programs need to be handled
right away, or copied by the kernel.
- Add bootloader allocator
- Implement a new linked-list based set of pages that act as allocation
registers
- Allow for operator new in the bootloader, which goes through the
global allocator for pool memory
- Split memory map and frame accouting code in the bootloader into
separate memory_map.* files
- Remove many includes that could be replaced by forward declaration in
the bootloader
- Add a new global template type, `counted`, which replaces the
bootloader's `buffer` type, and updated kernel args structure to use it.
- Move bootloader's pointer_manipulation.h to the global include dir
- Make offset_iterator try to return references instead of pointers to
make it more consistent with static array iteration
- Implement a stub atexit() in the bootloader to satisfy clang
The kernel::args namespace is really the protocol for initializing the
kernel from the bootloader. Also, the header struct in that namespace
isn't actually a header, but a collection of parameters. This change
renames the namespace to kernel::init and the struct to args.
After exiting UEFI, the bootloader had no way of displaying status to
the user. Now it will display a series of small boxes as a progress bar
along the bottom of the screen if a framebuffer exists. Errors or
warnings during a step will cause that step's box to turn red or orange,
and display bars above it to signal the error code.
This caused the simplification of the error handling system (which was
mostly just calling status_line::fail) and added different types of
status objects.