Rearrange memory bootstrapping code.

Move EFI-related code and initial memory manager bootstrap code
to memory_bootstrap.cpp, move memory page structs to their own
memory_page.h/cpp files.
This commit is contained in:
Justin C. Miller
2018-04-21 02:50:13 -07:00
parent 799ad8b264
commit da404f520d
6 changed files with 430 additions and 180 deletions

View File

@@ -41,6 +41,7 @@ void
kernel_main(popcorn_data *header) kernel_main(popcorn_data *header)
{ {
console cons = load_console(header); console cons = load_console(header);
memory_manager::create( memory_manager::create(
header->memory_map, header->memory_map,
header->memory_map_length, header->memory_map_length,

View File

@@ -1,187 +1,10 @@
#include <stdint.h>
#include "kutil/enum_bitfields.h"
#include "assert.h" #include "assert.h"
#include "console.h" #include "console.h"
#include "memory.h" #include "memory.h"
#include "memory_pages.h"
memory_manager *memory_manager::s_instance = nullptr; memory_manager *memory_manager::s_instance = nullptr;
enum class efi_memory_type : uint32_t memory_manager::memory_manager(page_block *free, page_block *used, void *scratch, size_t scratch_len)
{
reserved,
loader_code,
loader_data,
boot_services_code,
boot_services_data,
runtime_services_code,
runtime_services_data,
available,
unusable,
acpi_reclaim,
acpi_nvs,
mmio,
mmio_port,
pal_code,
efi_max,
popcorn_kernel = 0x80000000,
popcorn_font,
popcorn_data,
popcorn_log,
popcorn_pml4,
popcorn_max
};
const char *efi_memory_type_names[] = {
" reserved",
" loader_code",
" loader_data",
" boot_services_code",
" boot_services_data",
"runtime_services_code",
"runtime_services_data",
" available",
" unusable",
" acpi_reclaim",
" acpi_nvs",
" mmio",
" mmio_port",
" pal_code",
" popcorn_kernel",
" popcorn_font",
" popcorn_data",
" popcorn_log",
" popcorn_pml4",
};
static const char *
get_efi_name(efi_memory_type t)
{
static const unsigned offset =
(unsigned)efi_memory_type::popcorn_kernel - (unsigned)efi_memory_type::efi_max;
return t >= efi_memory_type::popcorn_kernel ?
efi_memory_type_names[(unsigned)t - offset] :
efi_memory_type_names[(unsigned)t];
}
enum class efi_memory_flag : uint64_t
{
can_mark_uc = 0x0000000000000001, // uc = un-cacheable
can_mark_wc = 0x0000000000000002, // wc = write-combining
can_mark_wt = 0x0000000000000004, // wt = write through
can_mark_wb = 0x0000000000000008, // wb = write back
can_mark_uce = 0x0000000000000010, // uce = un-cacheable exported
can_mark_wp = 0x0000000000001000, // wp = write protected
can_mark_rp = 0x0000000000002000, // rp = read protected
can_mark_xp = 0x0000000000004000, // xp = exceute protected
can_mark_ro = 0x0000000000020000, // ro = read only
non_volatile = 0x0000000000008000,
more_reliable = 0x0000000000010000,
runtime = 0x8000000000000000
};
IS_BITFIELD(efi_memory_flag);
struct efi_memory_descriptor
{
efi_memory_type type;
uint32_t pad;
uint64_t physical_start;
uint64_t virtual_start;
uint64_t pages;
efi_memory_flag flags;
};
static const efi_memory_descriptor *
desc_incr(const efi_memory_descriptor *d, size_t desc_length)
{
return reinterpret_cast<const efi_memory_descriptor *>(
reinterpret_cast<const uint8_t *>(d) + desc_length);
}
struct page_table
{
uint64_t entries[512];
page_table * next(int i) const
{
return reinterpret_cast<page_table *>(entries[i] & 0xfffffffffffff000);
}
};
struct page_block
{
uint64_t physical_address;
uint32_t count;
uint32_t flags;
};
void
memory_manager::create(const void *memory_map, size_t map_length, size_t desc_length)
{
// The bootloader reserved 4 pages for page tables, which we'll use to bootstrap.
// The first one is the already-installed PML4, so grab it from CR3.
page_table *tables = nullptr;
__asm__ __volatile__ ( "mov %%cr3, %0" : "=r" (tables) );
// Now go through EFi's memory map and find a 4MiB region of free space to
// use as a scratch space. We'll use the 2MiB that fits naturally aligned
// into a single page table.
efi_memory_descriptor const *free_mem =
reinterpret_cast<efi_memory_descriptor const *>(memory_map);
efi_memory_descriptor const *end = desc_incr(free_mem, map_length);
while (free_mem < end) {
if (free_mem->type == efi_memory_type::available && free_mem->pages >= 1024)
break;
free_mem = desc_incr(free_mem, desc_length);
continue;
}
kassert(free_mem < end, "Couldn't find 4MiB of contiguous scratch space.");
uint64_t start = (free_mem->physical_start & 0x1fffff) == 0 ?
free_mem->physical_start :
free_mem->physical_start + 0x1fffff & 0x1fffff;
// Identity-map that region. We'll need to copy any existing tables (except
// the PML4 which the bootloader gave us) into our 4 reserved pages so we
// can edit them.
uint64_t pml4_index = (start >> 39) & 0x1ff;
uint64_t pdpt_index = (start >> 30) & 0x1ff;
uint64_t pdt_index = (start >> 21) & 0x1ff;
if (tables[0].entries[pml4_index] & 0x1) {
page_table *old_pdpt = tables[0].next(pml4_index);
for (int i = 0; i < 512; ++i) tables[1].entries[i] = old_pdpt->entries[i];
} else {
for (int i = 0; i < 512; ++i) tables[1].entries[i] = 0;
}
tables[0].entries[pml4_index] = reinterpret_cast<uint64_t>(&tables[1]) | 0xb;
if (tables[1].entries[pdpt_index] & 0x1) {
page_table *old_pdt = tables[1].next(pdpt_index);
for (int i = 0; i < 512; ++i) tables[2].entries[i] = old_pdt->entries[i];
} else {
for (int i = 0; i < 512; ++i) tables[2].entries[i] = 0;
}
tables[1].entries[pdpt_index] = reinterpret_cast<uint64_t>(&tables[2]) | 0xb;
for (int i = 0; i < 512; ++i)
tables[3].entries[i] = (start + 0x1000) | 0xb;
tables[2].entries[pdt_index] = reinterpret_cast<uint64_t>(&tables[3]) | 0xb;
// We now have 2MiB starting at "start" to bootstrap ourselves
char const *hello = "Hello, beautiful memory! A little breathing space!";
char *world = reinterpret_cast<char *>(start);
while (*hello) *world++ = *hello++;
}
memory_manager::memory_manager(void *efi_runtime, void *memory_map, size_t map_length)
{ {
} }

View File

@@ -2,6 +2,8 @@
#include <stddef.h> #include <stddef.h>
struct page_block;
class memory_manager class memory_manager
{ {
public: public:
@@ -10,7 +12,7 @@ public:
static memory_manager * get() { return s_instance; } static memory_manager * get() { return s_instance; }
private: private:
memory_manager(void *efi_runtime, void *memory_map, size_t map_length); memory_manager(page_block *free, page_block *used, void *scratch, size_t scratch_len);
memory_manager() = delete; memory_manager() = delete;
memory_manager(const memory_manager &) = delete; memory_manager(const memory_manager &) = delete;

View File

@@ -0,0 +1,296 @@
#include "assert.h"
#include "console.h"
#include "memory.h"
#include "memory_pages.h"
enum class efi_memory_type : uint32_t
{
reserved,
loader_code,
loader_data,
boot_services_code,
boot_services_data,
runtime_services_code,
runtime_services_data,
available,
unusable,
acpi_reclaim,
acpi_nvs,
mmio,
mmio_port,
pal_code,
persistent,
efi_max,
popcorn_kernel = 0x80000000,
popcorn_font,
popcorn_data,
popcorn_log,
popcorn_pml4,
popcorn_max
};
const char *efi_memory_type_names[] = {
" reserved",
" loader_code",
" loader_data",
" boot_services_code",
" boot_services_data",
"runtime_services_code",
"runtime_services_data",
" available",
" unusable",
" acpi_reclaim",
" acpi_nvs",
" mmio",
" mmio_port",
" pal_code",
" popcorn_kernel",
" popcorn_font",
" popcorn_data",
" popcorn_log",
" popcorn_pml4",
};
static const char *
get_efi_name(efi_memory_type t)
{
static const unsigned offset =
(unsigned)efi_memory_type::popcorn_kernel - (unsigned)efi_memory_type::efi_max;
return t >= efi_memory_type::popcorn_kernel ?
efi_memory_type_names[(unsigned)t - offset] :
efi_memory_type_names[(unsigned)t];
}
enum class efi_memory_flag : uint64_t
{
can_mark_uc = 0x0000000000000001, // uc = un-cacheable
can_mark_wc = 0x0000000000000002, // wc = write-combining
can_mark_wt = 0x0000000000000004, // wt = write through
can_mark_wb = 0x0000000000000008, // wb = write back
can_mark_uce = 0x0000000000000010, // uce = un-cacheable exported
can_mark_wp = 0x0000000000001000, // wp = write protected
can_mark_rp = 0x0000000000002000, // rp = read protected
can_mark_xp = 0x0000000000004000, // xp = exceute protected
can_mark_ro = 0x0000000000020000, // ro = read only
non_volatile = 0x0000000000008000,
more_reliable = 0x0000000000010000,
runtime = 0x8000000000000000
};
IS_BITFIELD(efi_memory_flag);
struct efi_memory_descriptor
{
efi_memory_type type;
uint32_t pad;
uint64_t physical_start;
uint64_t virtual_start;
uint64_t pages;
efi_memory_flag flags;
};
static const efi_memory_descriptor *
desc_incr(const efi_memory_descriptor *d, size_t desc_length)
{
return reinterpret_cast<const efi_memory_descriptor *>(
reinterpret_cast<const uint8_t *>(d) + desc_length);
}
struct page_table
{
uint64_t entries[512];
page_table * next(int i) const { return reinterpret_cast<page_table *>(entries[i] & ~0xfffull); }
};
static unsigned
count_table_pages_needed(page_block *used)
{
page_table_indices last_idx{~0ull};
unsigned counts[] = {1, 0, 0, 0};
for (page_block *cur = used; cur; cur = cur->next) {
if (!cur->has_flag(page_block_flags::mapped))
continue;
page_table_indices start{cur->virtual_address};
page_table_indices end{cur->virtual_address + (cur->count * 0x1000)};
counts[1] +=
((start[0] == last_idx[0]) ? 0 : 1) +
(end[0] - start[0]);
counts[2] +=
((start[0] == last_idx[0] &&
start[1] == last_idx[1]) ? 0 : 1) +
(end[1] - start[1]);
counts[3] +=
((start[0] == last_idx[0] &&
start[1] == last_idx[1] &&
start[2] == last_idx[2]) ? 0 : 1) +
(end[2] - start[2]);
last_idx = end;
}
return counts[0] + counts[1] + counts[2] + counts[3];
}
void
memory_manager::create(const void *memory_map, size_t map_length, size_t desc_length)
{
console *cons = console::get();
// The bootloader reserved 4 pages for page tables, which we'll use to bootstrap.
// The first one is the already-installed PML4, so grab it from CR3.
page_table *tables = nullptr;
__asm__ __volatile__ ( "mov %%cr3, %0" : "=r" (tables) );
// Now go through EFi's memory map and find a 4MiB region of free space to
// use as a scratch space. We'll use the 2MiB that fits naturally aligned
// into a single page table.
efi_memory_descriptor const *desc =
reinterpret_cast<efi_memory_descriptor const *>(memory_map);
efi_memory_descriptor const *end = desc_incr(desc, map_length);
while (desc < end) {
if (desc->type == efi_memory_type::available && desc->pages >= 1024)
break;
desc = desc_incr(desc, desc_length);
}
kassert(desc < end, "Couldn't find 4MiB of contiguous scratch space.");
uint64_t free_region = (desc->physical_start & 0x1fffff) == 0 ?
desc->physical_start :
desc->physical_start + 0x1fffff & ~0x1fffffull;
// Offset-map this region into the higher half.
uint64_t next_free = free_region + 0xffff800000000000;
cons->puts("Found region: ");
cons->put_hex(free_region);
cons->puts("\n");
// We'll need to copy any existing tables (except the PML4 which the
// bootloader gave us) into our 4 reserved pages so we can edit them.
page_table_indices fr_idx{free_region};
fr_idx[0] += 256; // Flip the highest bit of the address
if (tables[0].entries[fr_idx[0]] & 0x1) {
page_table *old_pdpt = tables[0].next(fr_idx[0]);
for (int i = 0; i < 512; ++i) tables[1].entries[i] = old_pdpt->entries[i];
} else {
for (int i = 0; i < 512; ++i) tables[1].entries[i] = 0;
}
tables[0].entries[fr_idx[0]] = reinterpret_cast<uint64_t>(&tables[1]) | 0xb;
if (tables[1].entries[fr_idx[1]] & 0x1) {
page_table *old_pdt = tables[1].next(fr_idx[1]);
for (int i = 0; i < 512; ++i) tables[2].entries[i] = old_pdt->entries[i];
} else {
for (int i = 0; i < 512; ++i) tables[2].entries[i] = 0;
}
tables[1].entries[fr_idx[1]] = reinterpret_cast<uint64_t>(&tables[2]) | 0xb;
for (int i = 0; i < 512; ++i)
tables[3].entries[i] = (free_region + 0x1000 * i) | 0xb;
tables[2].entries[fr_idx[2]] = reinterpret_cast<uint64_t>(&tables[3]) | 0xb;
// We now have 2MiB starting at "free_region" to bootstrap ourselves. Start by
// taking inventory of free pages.
page_block *block_list = reinterpret_cast<page_block *>(next_free);
int i = 0;
page_block *free_head = nullptr, **free = &free_head;
page_block *used_head = nullptr, **used = &used_head;
desc = reinterpret_cast<efi_memory_descriptor const *>(memory_map);
while (desc < end) {
page_block *block = &block_list[i++];
block->physical_address = desc->physical_start;
block->virtual_address = desc->virtual_start;
block->count = desc->pages;
block->next = nullptr;
switch (desc->type) {
case efi_memory_type::loader_code:
case efi_memory_type::loader_data:
block->flags = page_block_flags::used | page_block_flags::pending_free;
break;
case efi_memory_type::boot_services_code:
case efi_memory_type::boot_services_data:
case efi_memory_type::available:
if (free_region >= block->physical_address && free_region < block->end()) {
// This is the scratch memory block, split off what we're not using
block->virtual_address = block->physical_address + 0xffff800000000000;
block->flags = page_block_flags::used
| page_block_flags::mapped
| page_block_flags::pending_free;
if (block->count > 1024) {
page_block *rest = &block_list[i++];
rest->physical_address = desc->physical_start + (1024*0x1000);
rest->virtual_address = 0;
rest->count = desc->pages - 1024;
rest->next = nullptr;
*free = rest;
free = &rest->next;
block->count = 1024;
}
} else {
block->flags = page_block_flags::free;
}
break;
case efi_memory_type::acpi_reclaim:
block->flags = page_block_flags::used | page_block_flags::acpi_wait;
break;
case efi_memory_type::persistent:
block->flags = page_block_flags::nonvolatile;
break;
default:
block->flags = page_block_flags::used | page_block_flags::permanent;
break;
}
if (block->has_flag(page_block_flags::used)) {
if (block->virtual_address != 0)
block->flags |= page_block_flags::mapped;
*used = block;
used = &block->next;
} else {
*free = block;
free = &block->next;
}
desc = desc_incr(desc, desc_length);
}
// Update the pointer to the next free page
next_free += i * sizeof(page_block);
next_free = ((next_free - 1) & ~0xfffull) + 0x1000;
// Now go back through these lists and consolidate
free_head->list_consolidate();
used_head->list_consolidate();
// Ok, now build an acutal set of kernel page tables that just contains
// what the kernel actually has mapped.
unsigned table_page_count = count_table_pages_needed(used_head);
cons->puts("To map currently-mapped pages, we need ");
cons->put_dec(table_page_count);
cons->puts(" pages of tables.\n");
}

View File

@@ -0,0 +1,74 @@
#include "console.h"
#include "memory_pages.h"
page_block *
page_block::list_consolidate()
{
page_block *cur = this;
page_block *freed_head = nullptr, **freed = &freed_head;
while (cur) {
page_block *next = cur->next;
if (next && cur->flags == next->flags &&
cur->end() == next->physical_address)
{
cur->count += next->count;
cur->next = next->next;
next->next = 0;
*freed = next;
freed = &next->next;
continue;
}
cur = next;
}
return freed_head;
}
void
page_block::list_dump(const char *name)
{
console *cons = console::get();
cons->puts("Block list");
if (name) {
cons->puts(" ");
cons->puts(name);
}
cons->puts(":\n");
int count = 0;
for (page_block *cur = this; cur; cur = cur->next) {
cons->puts(" ");
cons->put_hex(cur->physical_address);
cons->puts(" ");
cons->put_hex((uint32_t)cur->flags);
if (cur->virtual_address) {
cons->puts(" ");
cons->put_hex(cur->virtual_address);
}
cons->puts(" [");
cons->put_dec(cur->count);
cons->puts("]\n");
count += 1;
}
cons->puts(" Total: ");
cons->put_dec(count);
cons->puts("\n");
}
void
page_table_indices::dump()
{
console *cons = console::get();
cons->puts("{");
for (int i = 0; i < 4; ++i) {
if (i) cons->puts(", ");
cons->put_dec(index[i]);
}
cons->puts("}");
}

54
src/kernel/memory_pages.h Normal file
View File

@@ -0,0 +1,54 @@
#pragma once
#include <stdint.h>
#include "kutil/enum_bitfields.h"
enum class page_block_flags : uint32_t
{
// Not a flag value, but for comparison
free = 0x00000000,
used = 0x00000001,
mapped = 0x00000002,
pending_free = 0x00000004,
nonvolatile = 0x00000010,
acpi_wait = 0x00000020,
permanent = 0x80000000,
max_flags
};
IS_BITFIELD(page_block_flags);
struct page_block
{
uint64_t physical_address;
uint64_t virtual_address;
uint32_t count;
page_block_flags flags;
page_block *next;
bool has_flag(page_block_flags f) const { return bitfield_contains(flags, f); }
uint64_t end() const { return physical_address + (count * 0x1000); }
page_block * list_consolidate();
void list_dump(const char *name = nullptr);
};
struct page_table_indices
{
page_table_indices(uint64_t v) :
index{
(v >> 39) & 0x1ff,
(v >> 30) & 0x1ff,
(v >> 21) & 0x1ff,
(v >> 12) & 0x1ff }
{}
uint64_t & operator[](size_t i) { return index[i]; }
uint64_t index[4];
void dump();
};