Allow page table copying and unmapping

Lots of rearranging in page_manager as well, moving constants out as
well as helper structs.
This commit is contained in:
Justin C. Miller
2019-03-03 01:52:21 -08:00
parent 194527e0fe
commit ac19d3f532
6 changed files with 329 additions and 156 deletions

View File

@@ -0,0 +1,22 @@
#pragma once
/// \file kernel_memory.h
/// Constants related to the kernel's memory layout
namespace memory {
/// Size of a single page frame.
static const size_t frame_size = 0x1000;
/// Start of kernel memory.
static const uintptr_t kernel_offset = 0xffffff0000000000;
/// Offset from physical where page tables are mapped.
static const uintptr_t page_offset = 0xffffff8000000000;
/// Initial process thread's stack address
static const uintptr_t initial_stack = 0x0000800000000000;
/// Initial process thread's stack size, in pages
static const unsigned initial_stack_pages = 1;
} // namespace memory

View File

@@ -11,21 +11,22 @@
using kutil::frame_block; using kutil::frame_block;
using kutil::frame_block_flags; using kutil::frame_block_flags;
using kutil::frame_block_list; using kutil::frame_block_list;
using memory::frame_size;
using memory::kernel_offset;
using memory::page_offset;
static const unsigned ident_page_flags = 0xb; static const unsigned ident_page_flags = 0xb;
static const size_t page_size = page_manager::page_size;
extern kutil::frame_allocator g_frame_allocator;
kutil::frame_allocator g_frame_allocator;
kutil::address_manager g_kernel_address_manager; kutil::address_manager g_kernel_address_manager;
kutil::heap_manager g_kernel_heap_manager; kutil::heap_manager g_kernel_heap_manager;
void * mm_grow_callback(size_t length) void * mm_grow_callback(size_t length)
{ {
kassert(length % page_manager::page_size == 0, kassert(length % frame_size == 0,
"Heap manager requested a fractional page."); "Heap manager requested a fractional page.");
size_t pages = length / page_manager::page_size; size_t pages = length / frame_size;
log::info(logs::memory, "Heap manager growing heap by %d pages.", pages); log::info(logs::memory, "Heap manager growing heap by %d pages.", pages);
uintptr_t addr = g_kernel_address_manager.allocate(length); uintptr_t addr = g_kernel_address_manager.allocate(length);
@@ -40,19 +41,19 @@ namespace {
struct page_consumer struct page_consumer
{ {
page_consumer(uintptr_t start, unsigned count, unsigned used = 0) : page_consumer(uintptr_t start, unsigned count, unsigned used = 0) :
current(start + used * page_size), current(start + used * frame_size),
used(used), used(used),
max(count) {} max(count) {}
void * get_page() { void * get_page() {
kassert(used++ < max, "page_consumer ran out of pages"); kassert(used++ < max, "page_consumer ran out of pages");
void *retval = reinterpret_cast<void *>(current); void *retval = reinterpret_cast<void *>(current);
current += page_size; current += frame_size;
return retval; return retval;
} }
void * operator()(size_t size) { void * operator()(size_t size) {
kassert(size == page_size, "page_consumer used with non-page size!"); kassert(size == frame_size, "page_consumer used with non-page size!");
return get_page(); return get_page();
} }
@@ -233,7 +234,7 @@ page_in_ident(
// Do a 2MiB page instead // Do a 2MiB page instead
tables[2]->entries[idx[2]] = phys_addr | 0x80 | ident_page_flags; tables[2]->entries[idx[2]] = phys_addr | 0x80 | ident_page_flags;
phys_addr += page_size * 512; phys_addr += frame_size * 512;
count -= 512; count -= 512;
if (count == 0) return pages_consumed; if (count == 0) return pages_consumed;
continue; continue;
@@ -245,7 +246,7 @@ page_in_ident(
for (; idx[3] < 512; idx[3] += 1) { for (; idx[3] < 512; idx[3] += 1) {
tables[3]->entries[idx[3]] = phys_addr | ident_page_flags; tables[3]->entries[idx[3]] = phys_addr | ident_page_flags;
phys_addr += page_size; phys_addr += frame_size;
if (--count == 0) return pages_consumed; if (--count == 0) return pages_consumed;
} }
} }
@@ -277,7 +278,7 @@ memory_initialize(uint16_t scratch_pages, const void *memory_map, size_t map_len
// The tables are ident-mapped currently, so the cr3 physical address works. But let's // The tables are ident-mapped currently, so the cr3 physical address works. But let's
// get them into the offset-mapped area asap. // get them into the offset-mapped area asap.
page_table *tables = reinterpret_cast<page_table *>(scratch_phys); page_table *tables = reinterpret_cast<page_table *>(scratch_phys);
uintptr_t scratch_virt = scratch_phys + page_manager::page_offset; uintptr_t scratch_virt = scratch_phys + page_offset;
uint64_t used_pages = 1; // starts with PML4 uint64_t used_pages = 1; // starts with PML4
used_pages += page_in_ident( used_pages += page_in_ident(
@@ -295,7 +296,7 @@ memory_initialize(uint16_t scratch_pages, const void *memory_map, size_t map_len
// taking inventory of free pages. // taking inventory of free pages.
page_consumer allocator(scratch_virt, scratch_pages, used_pages); page_consumer allocator(scratch_virt, scratch_pages, used_pages);
block_allocator block_slab(page_size, allocator); block_allocator block_slab(frame_size, allocator);
frame_block_list used; frame_block_list used;
frame_block_list free; frame_block_list free;
@@ -305,15 +306,13 @@ memory_initialize(uint16_t scratch_pages, const void *memory_map, size_t map_len
// Now go back through these lists and consolidate // Now go back through these lists and consolidate
block_slab.append(frame_block::consolidate(free)); block_slab.append(frame_block::consolidate(free));
region_allocator region_slab(page_size, allocator); region_allocator region_slab(frame_size, allocator);
region_slab.allocate(); // Allocate some buddy regions for the address_manager region_slab.allocate(); // Allocate some buddy regions for the address_manager
kutil::address_manager *am = kutil::address_manager *am =
new (&g_kernel_address_manager) kutil::address_manager(std::move(region_slab)); new (&g_kernel_address_manager) kutil::address_manager(std::move(region_slab));
am->add_regions( am->add_regions(kernel_offset, page_offset - kernel_offset);
page_manager::high_offset,
page_manager::page_offset - page_manager::high_offset);
// Finally, build an acutal set of kernel page tables that just contains // Finally, build an acutal set of kernel page tables that just contains
// what the kernel actually has mapped, but making everything writable // what the kernel actually has mapped, but making everything writable
@@ -323,7 +322,7 @@ memory_initialize(uint16_t scratch_pages, const void *memory_map, size_t map_len
kutil::frame_allocator *fa = kutil::frame_allocator *fa =
new (&g_frame_allocator) kutil::frame_allocator(std::move(block_slab)); new (&g_frame_allocator) kutil::frame_allocator(std::move(block_slab));
page_manager *pm = new (&g_page_manager) page_manager(*fa); page_manager *pm = new (&g_page_manager) page_manager(*fa, *am);
// Give the rest to the page_manager's cache for use in page_in // Give the rest to the page_manager's cache for use in page_in
pm->free_table_pages( pm->free_table_pages(
@@ -339,15 +338,15 @@ memory_initialize(uint16_t scratch_pages, const void *memory_map, size_t map_len
break; break;
case frame_block_flags::map_kernel: case frame_block_flags::map_kernel:
virt_addr = block->address + page_manager::high_offset; virt_addr = block->address + kernel_offset;
if (block->flags && frame_block_flags::permanent) if (block->flags && frame_block_flags::permanent)
am->mark_permanent(virt_addr, block->count * page_size); am->mark_permanent(virt_addr, block->count * frame_size);
else else
am->mark(virt_addr, block->count * page_size); am->mark(virt_addr, block->count * frame_size);
break; break;
case frame_block_flags::map_offset: case frame_block_flags::map_offset:
virt_addr = block->address + page_manager::page_offset; virt_addr = block->address + page_offset;
break; break;
default: default:

View File

@@ -5,21 +5,28 @@
#include "log.h" #include "log.h"
#include "page_manager.h" #include "page_manager.h"
kutil::frame_allocator g_frame_allocator; using memory::frame_size;
page_manager g_page_manager(g_frame_allocator); using memory::kernel_offset;
using memory::page_offset;
extern kutil::frame_allocator g_frame_allocator;
extern kutil::address_manager g_kernel_address_manager;
page_manager g_page_manager(
g_frame_allocator,
g_kernel_address_manager);
static uintptr_t static uintptr_t
pt_to_phys(page_table *pt) pt_to_phys(page_table *pt)
{ {
return reinterpret_cast<uintptr_t>(pt) - page_manager::page_offset; return reinterpret_cast<uintptr_t>(pt) - page_offset;
} }
static page_table * static page_table *
pt_from_phys(uintptr_t p) pt_from_phys(uintptr_t p)
{ {
return reinterpret_cast<page_table *>((p + page_manager::page_offset) & ~0xfffull); return reinterpret_cast<page_table *>((p + page_offset) & ~0xfffull);
} }
@@ -30,9 +37,12 @@ struct free_page_header
}; };
page_manager::page_manager(kutil::frame_allocator &frames) : page_manager::page_manager(
kutil::frame_allocator &frames,
kutil::address_manager &addrs) :
m_page_cache(nullptr), m_page_cache(nullptr),
m_frames(frames) m_frames(frames),
m_addrs(addrs)
{ {
} }
@@ -41,25 +51,82 @@ page_manager::create_process_map()
{ {
page_table *table = get_table_page(); page_table *table = get_table_page();
kutil::memset(table, 0, page_size); kutil::memset(table, 0, frame_size);
table->entries[510] = m_kernel_pml4->entries[510]; table->entries[510] = m_kernel_pml4->entries[510];
table->entries[511] = m_kernel_pml4->entries[511]; table->entries[511] = m_kernel_pml4->entries[511];
// Create the initial user stack // Create the initial user stack
map_pages( map_pages(
initial_stack - (initial_stack_pages * page_size), memory::initial_stack - (memory::initial_stack_pages * frame_size),
initial_stack_pages, memory::initial_stack_pages,
true, // This is the ring3 stack, user = true true, // This is the ring3 stack, user = true
table); table);
return table; return table;
} }
void uintptr_t
page_manager::delete_process_map(page_table *table) page_manager::copy_page(uintptr_t orig)
{ {
// TODO: recurse table entries and mark them free uintptr_t virt = m_addrs.allocate(2 * frame_size);
unmap_pages(table, 1); uintptr_t copy = 0;
size_t n = m_frames.allocate(1, &copy);
kassert(n, "copy_page could not allocate page");
page_in(get_pml4(), orig, virt, 1);
page_in(get_pml4(), copy, virt + frame_size, 1);
kutil::memcpy(
reinterpret_cast<void *>(virt + frame_size),
reinterpret_cast<void *>(virt),
frame_size);
page_out(get_pml4(), virt, 2);
m_addrs.free(virt);
return copy;
}
page_table *
page_manager::copy_table(page_table *from, page_table::level lvl)
{
page_table *to = get_table_page();
const int max =
lvl == page_table::level::pml4 ?
510 :
512;
for (int i = 0; i < max; ++i) {
if (!from->is_present(i)) {
to->entries[i] = 0;
continue;
}
bool is_page =
lvl == page_table::level::pt ||
from->is_large_page(lvl, i);
if (is_page) {
uint16_t flags = from->entries[i] & 0xfffull;
uintptr_t orig = from->entries[i] & ~0xfffull;
to->entries[i] = copy_page(orig) | flags;
} else {
uint16_t flags = 0;
page_table *next_from = from->get(i, &flags);
page_table *next_to = copy_table(next_from, page_table::deeper(lvl));
to->set(i, next_to, flags);
}
}
return to;
}
void
page_manager::delete_process_map(page_table *pml4)
{
unmap_table(pml4, page_table::level::pml4, true);
} }
void void
@@ -67,7 +134,7 @@ page_manager::map_offset_pointer(void **pointer, size_t length)
{ {
uintptr_t *p = reinterpret_cast<uintptr_t *>(pointer); uintptr_t *p = reinterpret_cast<uintptr_t *>(pointer);
uintptr_t v = *p + page_offset; uintptr_t v = *p + page_offset;
uintptr_t c = ((length - 1) / page_size) + 1; uintptr_t c = ((length - 1) / frame_size) + 1;
page_table *pml4 = get_pml4(); page_table *pml4 = get_pml4();
page_in(pml4, *p, v, c); page_in(pml4, *p, v, c);
@@ -75,11 +142,10 @@ page_manager::map_offset_pointer(void **pointer, size_t length)
} }
void void
page_manager::dump_pml4(page_table *pml4, int max_index) page_manager::dump_pml4(page_table *pml4, bool recurse)
{ {
if (pml4 == nullptr) if (pml4 == nullptr) pml4 = get_pml4();
pml4 = get_pml4(); pml4->dump(page_table::level::pml4, recurse);
pml4->dump(4, max_index);
} }
page_table * page_table *
@@ -94,11 +160,11 @@ page_manager::get_table_page()
m_page_cache = reinterpret_cast<free_page_header *>(virt); m_page_cache = reinterpret_cast<free_page_header *>(virt);
// The last one needs to be null, so do n-1 // The last one needs to be null, so do n-1
uintptr_t end = virt + (n-1) * page_size; uintptr_t end = virt + (n-1) * frame_size;
while (virt < end) { while (virt < end) {
reinterpret_cast<free_page_header *>(virt)->next = reinterpret_cast<free_page_header *>(virt)->next =
reinterpret_cast<free_page_header *>(virt + page_size); reinterpret_cast<free_page_header *>(virt + frame_size);
virt += page_size; virt += frame_size;
} }
reinterpret_cast<free_page_header *>(virt)->next = nullptr; reinterpret_cast<free_page_header *>(virt)->next = nullptr;
@@ -115,7 +181,7 @@ page_manager::free_table_pages(void *pages, size_t count)
{ {
uintptr_t start = reinterpret_cast<uintptr_t>(pages); uintptr_t start = reinterpret_cast<uintptr_t>(pages);
for (size_t i = 0; i < count; ++i) { for (size_t i = 0; i < count; ++i) {
uintptr_t addr = start + (i * page_size); uintptr_t addr = start + (i * frame_size);
free_page_header *header = reinterpret_cast<free_page_header *>(addr); free_page_header *header = reinterpret_cast<free_page_header *>(addr);
header->count = 1; header->count = 1;
header->next = m_page_cache; header->next = m_page_cache;
@@ -138,7 +204,7 @@ page_manager::map_pages(uintptr_t address, size_t count, bool user, page_table *
page_in(pml4, phys, address, n, user); page_in(pml4, phys, address, n, user);
address += n * page_size; address += n * frame_size;
count -= n; count -= n;
} }
@@ -146,10 +212,53 @@ page_manager::map_pages(uintptr_t address, size_t count, bool user, page_table *
} }
void void
page_manager::unmap_pages(void* address, size_t count) page_manager::unmap_table(page_table *table, page_table::level lvl, bool free)
{ {
// TODO: uh, actually unmap that shit?? const int max =
m_frames.free(reinterpret_cast<uintptr_t>(address), count); lvl == page_table::level::pml4 ?
510 :
512;
uintptr_t free_start = 0;
uintptr_t free_count = 0;
size_t size =
lvl == page_table::level::pdp ? (1<<30) :
lvl == page_table::level::pd ? (1<<21) :
lvl == page_table::level::pt ? (1<<12) :
0;
for (int i = 0; i < max; ++i) {
if (!table->is_present(i)) continue;
bool is_page =
lvl == page_table::level::pt ||
table->is_large_page(lvl, i);
if (is_page) {
uintptr_t frame = table->entries[i] & ~0xfffull;
if (!free_count || free_start != frame + free_count * size) {
if (free_count && free)
m_frames.free(free_start, free_count * size / frame_size);
free_start = frame;
free_count = 1;
}
} else {
page_table *next = table->get(i);
unmap_table(next, page_table::deeper(lvl), free);
}
}
if (free_count && free)
m_frames.free(free_start, free_count * size / frame_size);
free_table_pages(table, 1);
}
void
page_manager::unmap_pages(void* address, size_t count, page_table *pml4)
{
if (!pml4) pml4 = get_pml4();
page_out(pml4, reinterpret_cast<uintptr_t>(address), count, true);
} }
void void
@@ -186,7 +295,7 @@ page_manager::page_in(page_table *pml4, uintptr_t phys_addr, uintptr_t virt_addr
tables[2]->get(idx[2]) == nullptr) { tables[2]->get(idx[2]) == nullptr) {
// Do a 2MiB page instead // Do a 2MiB page instead
tables[2]->entries[idx[2]] = phys_addr | flags | 0x80; tables[2]->entries[idx[2]] = phys_addr | flags | 0x80;
phys_addr += page_size * 512; phys_addr += frame_size * 512;
count -= 512; count -= 512;
if (count == 0) return; if (count == 0) return;
continue; continue;
@@ -197,7 +306,7 @@ page_manager::page_in(page_table *pml4, uintptr_t phys_addr, uintptr_t virt_addr
for (; idx[3] < 512; idx[3] += 1) { for (; idx[3] < 512; idx[3] += 1) {
tables[3]->entries[idx[3]] = phys_addr | flags; tables[3]->entries[idx[3]] = phys_addr | flags;
phys_addr += page_size; phys_addr += frame_size;
if (--count == 0) return; if (--count == 0) return;
} }
} }
@@ -208,26 +317,41 @@ page_manager::page_in(page_table *pml4, uintptr_t phys_addr, uintptr_t virt_addr
} }
void void
page_manager::page_out(page_table *pml4, uintptr_t virt_addr, size_t count) page_manager::page_out(page_table *pml4, uintptr_t virt_addr, size_t count, bool free)
{ {
page_table_indices idx{virt_addr}; page_table_indices idx{virt_addr};
page_table *tables[4] = {pml4, nullptr, nullptr, nullptr}; page_table *tables[4] = {pml4, nullptr, nullptr, nullptr};
bool found = false;
uintptr_t free_start = 0;
unsigned free_count = 0;
for (; idx[0] < 512; idx[0] += 1) { for (; idx[0] < 512; idx[0] += 1) {
tables[1] = reinterpret_cast<page_table *>( tables[1] = tables[0]->get(idx[0]);
tables[0]->entries[idx[0]] & ~0xfffull);
for (; idx[1] < 512; idx[1] += 1) { for (; idx[1] < 512; idx[1] += 1) {
tables[2] = reinterpret_cast<page_table *>( tables[2] = tables[1]->get(idx[1]);
tables[1]->entries[idx[1]] & ~0xfffull);
for (; idx[2] < 512; idx[2] += 1) { for (; idx[2] < 512; idx[2] += 1) {
tables[3] = reinterpret_cast<page_table *>( tables[3] = tables[2]->get(idx[2]);
tables[2]->entries[idx[2]] & ~0xfffull);
for (; idx[3] < 512; idx[3] += 1) { for (; idx[3] < 512; idx[3] += 1) {
uintptr_t entry = tables[3]->entries[idx[3]] & ~0xfffull;
if (!found || entry != free_start + free_count * frame_size) {
if (found && free) m_frames.free(free_start, free_count);
free_start = tables[3]->entries[idx[3]] & ~0xfffull;
free_count = 1;
found = true;
} else {
free_count++;
}
tables[3]->entries[idx[3]] = 0; tables[3]->entries[idx[3]] = 0;
if (--count == 0) return;
if (--count == 0) {
if (free) m_frames.free(free_start, free_count);
return;
}
} }
} }
} }
@@ -237,40 +361,36 @@ page_manager::page_out(page_table *pml4, uintptr_t virt_addr, size_t count)
} }
void void
page_table::dump(int level, int max_index, uint64_t offset) page_table::dump(page_table::level lvl, bool recurse)
{ {
console *cons = console::get(); console *cons = console::get();
cons->printf("\nLevel %d page table @ %lx (off %lx):\n", level, this, offset); cons->printf("\nLevel %d page table @ %lx:\n", lvl, this);
for (int i=0; i<512; ++i) { for (int i=0; i<512; ++i) {
uint64_t ent = entries[i]; uint64_t ent = entries[i];
if (ent == 0) continue;
if ((ent & 0x1) == 0) { if ((ent & 0x1) == 0)
cons->printf(" %3d: %016lx NOT PRESENT\n", i, ent); cons->printf(" %3d: %016lx NOT PRESENT\n", i, ent);
continue;
}
if ((level == 2 || level == 3) && (ent & 0x80) == 0x80) { else if ((lvl == level::pdp || lvl == level::pd) && (ent & 0x80) == 0x80)
cons->printf(" %3d: %016lx -> Large page at %016lx\n", i, ent, ent & ~0xfffull); cons->printf(" %3d: %016lx -> Large page at %016lx\n", i, ent, ent & ~0xfffull);
continue;
} else if (level == 1) { else if (lvl == level::pt)
cons->printf(" %3d: %016lx -> Page at %016lx\n", i, ent, ent & ~0xfffull); cons->printf(" %3d: %016lx -> Page at %016lx\n", i, ent, ent & ~0xfffull);
} else {
else
cons->printf(" %3d: %016lx -> Level %d table at %016lx\n", cons->printf(" %3d: %016lx -> Level %d table at %016lx\n",
i, ent, level - 1, (ent & ~0xfffull) + offset); i, ent, deeper(lvl), (ent & ~0xfffull) + page_offset);
}
if (lvl != level::pt && recurse) {
for (int i=0; i<=512; ++i) {
if (is_large_page(lvl, i))
continue; continue;
}
}
if (--level > 0) { page_table *next = get(i);
for (int i=0; i<=max_index; ++i) { if (next)
uint64_t ent = entries[i]; next->dump(deeper(lvl), true);
if ((ent & 0x1) == 0) continue;
if ((ent & 0x80)) continue;
page_table *next = reinterpret_cast<page_table *>((ent & ~0xffful) + offset);
next->dump(level, 511, offset);
} }
} }
} }

View File

@@ -5,41 +5,30 @@
#include <stddef.h> #include <stddef.h>
#include <stdint.h> #include <stdint.h>
#include "kutil/address_manager.h"
#include "kutil/enum_bitfields.h" #include "kutil/enum_bitfields.h"
#include "kutil/frame_allocator.h" #include "kutil/frame_allocator.h"
#include "kutil/linked_list.h" #include "kutil/linked_list.h"
#include "kutil/slab_allocator.h" #include "kutil/slab_allocator.h"
#include "kernel_memory.h"
#include "page_table.h"
struct page_table;
struct free_page_header; struct free_page_header;
/// Manager for allocation and mapping of pages /// Manager for allocation and mapping of pages
class page_manager class page_manager
{ {
public: public:
/// Size of a single page. page_manager(
static const size_t page_size = 0x1000; kutil::frame_allocator &frames,
kutil::address_manager &addrs);
/// Start of the higher half.
static const uintptr_t high_offset = 0xffffff0000000000;
/// Offset from physical where page tables are mapped.
static const uintptr_t page_offset = 0xffffff8000000000;
/// Initial process thread's stack address
static const uintptr_t initial_stack = 0x0000800000000000;
/// Initial process thread's stack size, in pages
static const unsigned initial_stack_pages = 1;
page_manager(kutil::frame_allocator &frames);
/// Helper to get the number of pages needed for a given number of bytes. /// Helper to get the number of pages needed for a given number of bytes.
/// \arg bytes The number of bytes desired /// \arg bytes The number of bytes desired
/// \returns The number of pages needed to contain the desired bytes /// \returns The number of pages needed to contain the desired bytes
static inline size_t page_count(size_t bytes) static inline size_t page_count(size_t bytes)
{ {
return (bytes - 1) / page_size + 1; return (bytes - 1) / memory::frame_size + 1;
} }
/// Helper to read the PML4 table from CR3. /// Helper to read the PML4 table from CR3.
@@ -48,14 +37,14 @@ public:
{ {
uintptr_t pml4 = 0; uintptr_t pml4 = 0;
__asm__ __volatile__ ( "mov %%cr3, %0" : "=r" (pml4) ); __asm__ __volatile__ ( "mov %%cr3, %0" : "=r" (pml4) );
return reinterpret_cast<page_table *>((pml4 & ~0xfffull) + page_offset); return reinterpret_cast<page_table *>((pml4 & ~0xfffull) + memory::page_offset);
} }
/// Helper to set the PML4 table pointer in CR3. /// Helper to set the PML4 table pointer in CR3.
/// \arg pml4 A pointer to the PML4 table to install. /// \arg pml4 A pointer to the PML4 table to install.
static inline void set_pml4(page_table *pml4) static inline void set_pml4(page_table *pml4)
{ {
uintptr_t p = reinterpret_cast<uintptr_t>(pml4) - page_offset; uintptr_t p = reinterpret_cast<uintptr_t>(pml4) - memory::page_offset;
__asm__ __volatile__ ( "mov %0, %%cr3" :: "r" (p & ~0xfffull) ); __asm__ __volatile__ ( "mov %0, %%cr3" :: "r" (p & ~0xfffull) );
} }
@@ -64,8 +53,16 @@ public:
/// \returns A pointer to the PML4 table /// \returns A pointer to the PML4 table
page_table * create_process_map(); page_table * create_process_map();
/// Deallocate a process' PML4 table. /// Deallocate a process' PML4 table and entries.
void delete_process_map(page_table *table); /// \arg pml4 The process' PML4 table
void delete_process_map(page_table *pml4);
/// Copy a process' memory mappings (and memory pages).
/// \arg from Page table to copy from
/// \arg lvl Level of the given tables (default is PML4)
/// \returns The new page table
page_table * copy_table(page_table *from,
page_table::level lvl = page_table::level::pml4);
/// Allocate and map pages into virtual memory. /// Allocate and map pages into virtual memory.
/// \arg address The virtual address at which to map the pages /// \arg address The virtual address at which to map the pages
@@ -75,10 +72,11 @@ public:
/// \returns A pointer to the start of the mapped region /// \returns A pointer to the start of the mapped region
void * map_pages(uintptr_t address, size_t count, bool user = false, page_table *pml4 = nullptr); void * map_pages(uintptr_t address, size_t count, bool user = false, page_table *pml4 = nullptr);
/// Unmap existing pages from memory. /// Unmap and free existing pages from memory.
/// \arg address The virtual address of the memory to unmap /// \arg address The virtual address of the memory to unmap
/// \arg count The number of pages to unmap /// \arg count The number of pages to unmap
void unmap_pages(void *address, size_t count); /// \arg pml4 The pml4 to unmap from - null for the current one
void unmap_pages(void *address, size_t count, page_table *pml4 = nullptr);
/// Offset-map a pointer. No physical pages will be mapped. /// Offset-map a pointer. No physical pages will be mapped.
/// \arg pointer Pointer to a pointer to the memory area to be mapped /// \arg pointer Pointer to a pointer to the memory area to be mapped
@@ -90,7 +88,7 @@ public:
/// \returns Physical address of the memory pointed to by p /// \returns Physical address of the memory pointed to by p
inline uintptr_t offset_phys(void *p) const inline uintptr_t offset_phys(void *p) const
{ {
return reinterpret_cast<uintptr_t>(kutil::offset_pointer(p, -page_offset)); return reinterpret_cast<uintptr_t>(kutil::offset_pointer(p, -memory::page_offset));
} }
/// Get the virtual address of an offset-mapped physical address /// Get the virtual address of an offset-mapped physical address
@@ -98,19 +96,24 @@ public:
/// \returns Virtual address of the memory at address a /// \returns Virtual address of the memory at address a
inline void * offset_virt(uintptr_t a) const inline void * offset_virt(uintptr_t a) const
{ {
return kutil::offset_pointer(reinterpret_cast<void *>(a), page_offset); return kutil::offset_pointer(reinterpret_cast<void *>(a), memory::page_offset);
} }
/// Dump the given or current PML4 to the console /// Dump the given or current PML4 to the console
/// \arg pml4 The page table to use, null for the current one /// \arg pml4 The page table to use, null for the current one
/// \arg max_index The max index of pml4 to print /// \arg recurse Whether to print sub-tables
void dump_pml4(page_table *pml4 = nullptr, int max_index = 511); void dump_pml4(page_table *pml4 = nullptr, bool recurse = true);
/// Get the system page manager. /// Get the system page manager.
/// \returns A pointer to the system page manager /// \returns A pointer to the system page manager
static page_manager * get(); static page_manager * get();
private: private:
/// Copy a physical page
/// \arg orig Physical address of the page to copy
/// \returns Physical address of the new page
uintptr_t copy_page(uintptr_t orig);
/// Allocate a page for a page table, or pull one from the cache /// Allocate a page for a page table, or pull one from the cache
/// \returns An empty page mapped in page space /// \returns An empty page mapped in page space
page_table * get_table_page(); page_table * get_table_page();
@@ -145,14 +148,21 @@ private:
/// \arg pml4 The root page table for this mapping /// \arg pml4 The root page table for this mapping
/// \arg virt_addr The starting virtual address ot the memory to be unmapped /// \arg virt_addr The starting virtual address ot the memory to be unmapped
/// \arg count The number of pages to unmap /// \arg count The number of pages to unmap
/// \arg free Whether to return the pages to the frame allocator
void page_out( void page_out(
page_table *pml4, page_table *pml4,
uintptr_t virt_addr, uintptr_t virt_addr,
size_t count); size_t count,
bool free = false);
/// Low-level routine for unmapping an entire table of memory at once
void unmap_table(page_table *table, page_table::level lvl, bool free);
page_table *m_kernel_pml4; ///< The PML4 of just kernel pages page_table *m_kernel_pml4; ///< The PML4 of just kernel pages
free_page_header *m_page_cache; ///< Cache of free pages to use for tables free_page_header *m_page_cache; ///< Cache of free pages to use for tables
kutil::frame_allocator &m_frames; kutil::frame_allocator &m_frames;
kutil::address_manager &m_addrs;
friend void memory_initialize(uint16_t, const void *, size_t, size_t); friend void memory_initialize(uint16_t, const void *, size_t, size_t);
page_manager(const page_manager &) = delete; page_manager(const page_manager &) = delete;
@@ -164,44 +174,6 @@ extern page_manager g_page_manager;
inline page_manager * page_manager::get() { return &g_page_manager; } inline page_manager * page_manager::get() { return &g_page_manager; }
/// Struct to allow easy accessing of a memory page being used as a page table.
struct page_table
{
using pm = page_manager;
uint64_t entries[512];
inline page_table * get(int i) const {
uint64_t entry = entries[i];
if ((entry & 0x1) == 0) return nullptr;
return reinterpret_cast<page_table *>((entry & ~0xfffull) + pm::page_offset);
}
inline void set(int i, page_table *p, uint16_t flags) {
entries[i] = (reinterpret_cast<uint64_t>(p) - pm::page_offset) | (flags & 0xfff);
}
void dump(int level = 4, int max_index = 511, uint64_t offset = page_manager::page_offset);
};
/// Helper struct for computing page table indices of a given address.
struct page_table_indices
{
page_table_indices(uint64_t v = 0);
uintptr_t addr() const;
inline operator uintptr_t() const { return addr(); }
/// Get the index for a given level of page table.
uint64_t & operator[](size_t i) { return index[i]; }
uint64_t operator[](size_t i) const { return index[i]; }
uint64_t index[4]; ///< Indices for each level of tables.
};
bool operator==(const page_table_indices &l, const page_table_indices &r);
/// Calculate a page-aligned address. /// Calculate a page-aligned address.
/// \arg p The address to align. /// \arg p The address to align.
/// \returns The next page-aligned address _after_ `p`. /// \returns The next page-aligned address _after_ `p`.
@@ -209,8 +181,8 @@ template <typename T> inline T
page_align(T p) page_align(T p)
{ {
return reinterpret_cast<T>( return reinterpret_cast<T>(
((reinterpret_cast<uintptr_t>(p) - 1) & ~(page_manager::page_size - 1)) ((reinterpret_cast<uintptr_t>(p) - 1) & ~(memory::frame_size - 1))
+ page_manager::page_size); + memory::frame_size);
} }
/// Calculate a page-table-aligned address. That is, an address that is /// Calculate a page-table-aligned address. That is, an address that is
@@ -224,11 +196,5 @@ page_table_align(T p)
} }
/// Calculate the number of pages needed for the give number of bytes.
/// \arg n Number of bytes
/// \returns Number of pages
inline size_t page_count(size_t n) { return ((n - 1) / page_manager::page_size) + 1; }
/// Bootstrap the memory managers. /// Bootstrap the memory managers.
void memory_initialize(uint16_t scratch_pages, const void *memory_map, size_t map_length, size_t desc_length); void memory_initialize(uint16_t scratch_pages, const void *memory_map, size_t map_length, size_t desc_length);

63
src/kernel/page_table.h Normal file
View File

@@ -0,0 +1,63 @@
#pragma once
/// \file page_table.h
/// Helper structures for dealing with page tables.
#include <stdint.h>
#include "kernel_memory.h"
class page_manager;
/// Struct to allow easy accessing of a memory page being used as a page table.
struct page_table
{
enum class level : unsigned { pml4, pdp, pd, pt };
inline static level deeper(level l) {
return static_cast<level>(static_cast<unsigned>(l) + 1);
}
uint64_t entries[512];
inline page_table * get(int i, uint16_t *flags = nullptr) const {
uint64_t entry = entries[i];
if ((entry & 0x1) == 0) return nullptr;
if (flags) *flags = entry & 0xfffull;
return reinterpret_cast<page_table *>((entry & ~0xfffull) + memory::page_offset);
}
inline void set(int i, page_table *p, uint16_t flags) {
entries[i] = (reinterpret_cast<uint64_t>(p) - memory::page_offset) | (flags & 0xfff);
}
inline bool is_present(int i) const { return (entries[i] & 0x1) == 0x1; }
inline bool is_large_page(level l, int i) const {
return
(l == level::pdp || l == level::pd) &&
(entries[i] & 0x80) == 0x80;
}
void dump(
level lvl = level::pml4,
bool recurse = true);
};
/// Helper struct for computing page table indices of a given address.
struct page_table_indices
{
page_table_indices(uint64_t v = 0);
uintptr_t addr() const;
inline operator uintptr_t() const { return addr(); }
/// Get the index for a given level of page table.
uint64_t & operator[](int i) { return index[i]; }
uint64_t operator[](int i) const { return index[i]; }
uint64_t & operator[](page_table::level i) { return index[static_cast<unsigned>(i)]; }
uint64_t operator[](page_table::level i) const { return index[static_cast<unsigned>(i)]; }
uint64_t index[4]; ///< Indices for each level of tables.
};
bool operator==(const page_table_indices &l, const page_table_indices &r);

View File

@@ -4,6 +4,7 @@
#include "gdt.h" #include "gdt.h"
#include "interrupts.h" #include "interrupts.h"
#include "io.h" #include "io.h"
#include "kernel_memory.h"
#include "log.h" #include "log.h"
#include "msr.h" #include "msr.h"
#include "page_manager.h" #include "page_manager.h"
@@ -12,6 +13,8 @@
#include "elf/elf.h" #include "elf/elf.h"
#include "kutil/assert.h" #include "kutil/assert.h"
using memory::initial_stack;
scheduler scheduler::s_instance(nullptr); scheduler scheduler::s_instance(nullptr);
const int stack_size = 0x1000; const int stack_size = 0x1000;
@@ -67,7 +70,7 @@ load_process(const void *image_start, size_t bytes, process *proc, cpu_state sta
if (header->type != elf::segment_type::load) if (header->type != elf::segment_type::load)
continue; continue;
uintptr_t aligned = header->vaddr & ~(page_manager::page_size - 1); uintptr_t aligned = header->vaddr & ~(memory::frame_size - 1);
size_t size = (header->vaddr + header->mem_size) - aligned; size_t size = (header->vaddr + header->mem_size) - aligned;
size_t pages = page_manager::page_count(size); size_t pages = page_manager::page_count(size);
@@ -80,7 +83,7 @@ load_process(const void *image_start, size_t bytes, process *proc, cpu_state sta
void *mapped = pager->map_pages(aligned, pages, true); void *mapped = pager->map_pages(aligned, pages, true);
kassert(mapped, "Tried to map userspace pages and failed!"); kassert(mapped, "Tried to map userspace pages and failed!");
kutil::memset(mapped, 0, pages * page_manager::page_size); kutil::memset(mapped, 0, pages * memory::frame_size);
} }
const unsigned section_count = image.section_count(); const unsigned section_count = image.section_count();
@@ -132,7 +135,7 @@ scheduler::create_process(const char *name, const void *data, size_t size)
state->cs = cs; state->cs = cs;
state->rflags = rflags_int; state->rflags = rflags_int;
state->rip = 0; // to be filled by the loader state->rip = 0; // to be filled by the loader
state->user_rsp = page_manager::initial_stack; state->user_rsp = initial_stack;
// Next state in the stack is the loader's kernel stack. The scheduler will // Next state in the stack is the loader's kernel stack. The scheduler will
// iret to this which will kick off the loading: // iret to this which will kick off the loading: