Correct the name of 'modules' folder to 'libraries'

This commit is contained in:
Justin C. Miller
2018-05-22 10:15:43 -07:00
parent bc26d7d01d
commit 57829e1b79
13 changed files with 11 additions and 11 deletions

View File

@@ -0,0 +1,16 @@
#include "assert.h"
namespace kutil {
assert_callback __kernel_assert_p = nullptr;
assert_callback
assert_set_callback(assert_callback f)
{
assert_callback old = __kernel_assert_p;
__kernel_assert_p = f;
return old;
}
} // namespace kutil

View File

@@ -0,0 +1,18 @@
#pragma once
namespace kutil {
using assert_callback =
void (*) (const char *file, unsigned line, const char *message);
/// Set the global kernel assert callback
/// \args f The new callback
/// \returns The old callback
assert_callback assert_set_callback(assert_callback f);
extern assert_callback __kernel_assert_p;
} // namespace kutil
#define kassert(stmt, message) do { if(!(stmt)) { ::kutil::__kernel_assert_p(__FILE__, __LINE__, (message)); }} while(0);

View File

@@ -0,0 +1,14 @@
#pragma once
namespace kutil {
template <typename T>
struct coord
{
T x, y;
coord() : x(T{}), y(T{}) {}
coord(T x, T y) : x(x), y(y) {}
T size() const { return x * y; }
};
} // namespace kutil

View File

@@ -0,0 +1,90 @@
#pragma once
#include <type_traits>
template<typename E>
struct is_enum_bitfield { static constexpr bool value = false; };
#define IS_BITFIELD(name) \
template<> struct ::is_enum_bitfield<name> {static constexpr bool value=true;}
template <typename E, typename F>
typename std::enable_if<is_enum_bitfield<E>::value,E>::type
operator & (E lhs, F rhs)
{
return static_cast<E> (
static_cast<typename std::underlying_type<E>::type>(lhs) &
static_cast<typename std::underlying_type<E>::type>(rhs));
}
template <typename E, typename F>
typename std::enable_if<is_enum_bitfield<E>::value,E>::type
operator | (E lhs, F rhs)
{
return static_cast<E> (
static_cast<typename std::underlying_type<E>::type>(lhs) |
static_cast<typename std::underlying_type<E>::type>(rhs));
}
template <typename E, typename F>
typename std::enable_if<is_enum_bitfield<E>::value,E>::type
operator ^ (E lhs, F rhs)
{
return static_cast<E> (
static_cast<typename std::underlying_type<E>::type>(lhs) ^
static_cast<typename std::underlying_type<E>::type>(rhs));
}
template <typename E>
typename std::enable_if<is_enum_bitfield<E>::value,E>::type
operator ~ (E rhs)
{
return static_cast<E>(~static_cast<typename std::underlying_type<E>::type>(rhs));
}
template <typename E, typename F>
typename std::enable_if<is_enum_bitfield<E>::value,E>::type&
operator |= (E &lhs, F rhs)
{
lhs = static_cast<E>(
static_cast<typename std::underlying_type<E>::type>(lhs) |
static_cast<typename std::underlying_type<E>::type>(rhs));
return lhs;
}
template <typename E, typename F>
typename std::enable_if<is_enum_bitfield<E>::value,E>::type&
operator &= (E &lhs, F rhs)
{
lhs = static_cast<E>(
static_cast<typename std::underlying_type<E>::type>(lhs) &
static_cast<typename std::underlying_type<E>::type>(rhs));
return lhs;
}
template <typename E, typename F>
typename std::enable_if<is_enum_bitfield<E>::value,E>::type&
operator ^= (E &lhs, F rhs)
{
lhs = static_cast<E>(
static_cast<typename std::underlying_type<E>::type>(lhs) ^
static_cast<typename std::underlying_type<E>::type>(rhs));
return lhs;
}
template <typename E>
typename std::enable_if<is_enum_bitfield<E>::value,bool>::type
operator ! (E rhs)
{
return static_cast<typename std::underlying_type<E>::type>(rhs) == 0;
}
template <typename E>
typename std::enable_if<is_enum_bitfield<E>::value,bool>::type
bitfield_has(E set, E flag)
{
return (set & flag) == flag;
}

View File

@@ -0,0 +1,38 @@
#pragma once
/// \file guid.h
/// Definition of the guid type and related functions
#include <stdint.h>
#include "kutil/misc.h"
namespace kutil {
/// A GUID
struct guid
{
uint64_t a, b;
};
/// Make a GUID by writing it naturally-ordered in code:
/// AAAAAAAA-BBBB-CCCC-DDDD-EEEEEEEEEEEE becomes:
/// make_guid(0xAAAAAAAA, 0xBBBB, 0xCCCC, 0xDDDD, 0xEEEEEEEEEEEE);
/// \returns The guid object
inline constexpr guid make_guid(uint32_t a, uint16_t b, uint16_t c, uint16_t d, uint64_t e)
{
const uint64_t h =
static_cast<uint64_t>(c) << 48 |
static_cast<uint64_t>(b) << 32 |
a;
const uint64_t l =
static_cast<uint64_t>(byteswap(e & 0xffffffff)) << 32 |
(byteswap(e >> 32) & 0xffff0000) |
((d << 8) & 0xff00) | ((d >> 8) & 0xff);
return {h, l};
}
} // namespace kutil
inline bool operator==(const kutil::guid &a, const kutil::guid &b) { return a.a == b.a && a.b == b.b; }

View File

@@ -0,0 +1,28 @@
#include "memory.h"
void * operator new (size_t, void *p) noexcept { return p; }
void * operator new (size_t n) { return kutil::malloc(n); }
void * operator new[] (size_t n) { return kutil::malloc(n); }
void operator delete (void *p) noexcept { return kutil::free(p); }
void operator delete[] (void *p) noexcept { return kutil::free(p); }
namespace kutil {
void *
memset(void *s, uint8_t v, size_t n)
{
uint8_t *p = reinterpret_cast<uint8_t *>(s);
for (size_t i = 0; i < n; ++i) p[i] = v;
return s;
}
void *
memcpy(void *dest, void *src, size_t n)
{
uint8_t *s = reinterpret_cast<uint8_t *>(src);
uint8_t *d = reinterpret_cast<uint8_t *>(dest);
for (size_t i = 0; i < n; ++i) d[i] = s[i];
return d;
}
} // namespace kutil

View File

@@ -0,0 +1,69 @@
#pragma once
#include <stddef.h>
#include <stdint.h>
using addr_t = uint64_t;
void * operator new (size_t, void *p) noexcept;
namespace kutil {
/// Allocate memory. Note: this needs to be implemented
/// by the kernel, or other program using this library.
/// \arg n The number of bytes to allocate
/// \returns The allocated memory
void * malloc(size_t n);
/// Free memory allocated by malloc(). Note: this needs
/// to be implemented by the kernel, or other program
/// using this library.
/// \arg p A pointer previously returned by malloc()
void free(void *p);
/// Fill memory with the given value.
/// \arg p The beginning of the memory area to fill
/// \arg v The byte value to fill memory with
/// \arg n The size in bytes of the memory area
/// \returns A pointer to the filled memory
void * memset(void *p, uint8_t v, size_t n);
/// Copy an area of memory to another
/// \dest The memory to copy to
/// \src The memory to copy from
/// \n The number of bytes to copy
/// \returns A pointer to the destination memory
void * memcpy(void *dest, void *src, size_t n);
/// Read a value of type T from a location in memory
/// \arg p The location in memory to read
/// \returns The value at the given location cast to T
template <typename T>
inline T read_from(const void *p)
{
return *reinterpret_cast<const T *>(p);
}
/// Get a pointer that's offset from another pointer
/// \arg p The base pointer
/// \arg n The offset in bytes
/// \returns The offset pointer
template <typename T>
inline T * offset_pointer(T *p, ptrdiff_t n)
{
return reinterpret_cast<T *>(reinterpret_cast<addr_t>(p) + n);
}
/// Return a pointer with the given bits masked out
/// \arg p The original pointer
/// \arg mask A bitmask of bits to clear from p
/// \returns The masked pointer
template <typename T>
inline T* mask_pointer(T *p, addr_t mask)
{
return reinterpret_cast<T *>(reinterpret_cast<addr_t>(p) & ~mask);
}
} // namespace kutil

View File

@@ -0,0 +1,168 @@
#include <stdint.h>
#include "assert.h"
#include "memory.h"
#include "memory_manager.h"
namespace kutil {
struct memory_manager::mem_header
{
mem_header(mem_header *prev, mem_header *next, uint8_t size) :
m_prev(prev), m_next(next)
{
set_size(size);
}
inline void set_size(uint8_t size)
{
m_prev = reinterpret_cast<mem_header *>(
reinterpret_cast<addr_t>(prev()) | (size & 0x3f));
}
inline void set_used(bool used)
{
m_next = reinterpret_cast<mem_header *>(
reinterpret_cast<addr_t>(next()) | (used ? 1 : 0));
}
inline void set_next(mem_header *next)
{
bool u = used();
m_next = next;
set_used(u);
}
inline void set_prev(mem_header *prev)
{
uint8_t s = size();
m_prev = prev;
set_size(s);
}
void remove()
{
if (next()) next()->set_prev(prev());
if (prev()) prev()->set_next(next());
set_prev(nullptr);
set_next(nullptr);
}
inline mem_header * next() { return kutil::mask_pointer(m_next, 0x3f); }
inline mem_header * prev() { return kutil::mask_pointer(m_prev, 0x3f); }
inline mem_header * buddy() const {
return reinterpret_cast<mem_header *>(
reinterpret_cast<addr_t>(this) ^ (1 << size()));
}
inline bool eldest() const { return this < buddy(); }
inline uint8_t size() const { return reinterpret_cast<addr_t>(m_prev) & 0x3f; }
inline bool used() const { return reinterpret_cast<addr_t>(m_next) & 0x1; }
private:
mem_header *m_prev;
mem_header *m_next;
};
memory_manager::memory_manager() :
m_start(nullptr),
m_length(0),
m_grow(nullptr)
{
kutil::memset(m_free, 0, sizeof(m_free));
}
memory_manager::memory_manager(void *start, grow_callback grow_cb) :
m_start(start),
m_length(0),
m_grow(grow_cb)
{
kutil::memset(m_free, 0, sizeof(m_free));
grow_memory();
}
void *
memory_manager::allocate(size_t length)
{
size_t total = length + sizeof(mem_header);
unsigned size = min_size;
while (total > (1 << size)) size++;
kassert(size <= max_size, "Tried to allocate a block bigger than max_size");
mem_header *header = pop_free(size);
header->set_used(true);
return header + 1;
}
void
memory_manager::free(void *p)
{
mem_header *header = reinterpret_cast<mem_header *>(p);
header -= 1; // p points after the header
header->set_used(false);
while (true) {
mem_header *buddy = header->buddy();
if (buddy->used() || buddy->size() != header->size()) break;
buddy->remove();
header = header->eldest() ? header : buddy;
header->set_size(header->size() + 1);
}
uint8_t size = header->size();
header->set_next(get_free(size));
get_free(size) = header;
if (header->next())
header->next()->set_prev(header);
}
void
memory_manager::grow_memory()
{
size_t length = (1 << max_size);
void *next = kutil::offset_pointer(m_start, m_length);
kassert(m_grow, "Tried to grow heap without a growth callback");
m_grow(next, length);
mem_header *block = new (next) mem_header(nullptr, get_free(max_size), max_size);
get_free(max_size) = block;
if (block->next())
block->next()->set_prev(block);
m_length += length;
}
void
memory_manager::ensure_block(unsigned size)
{
if (get_free(size) != nullptr) return;
else if (size == max_size) {
grow_memory();
return;
}
mem_header *orig = pop_free(size + 1);
mem_header *next = kutil::offset_pointer(orig, 1 << size);
new (next) mem_header(orig, nullptr, size);
orig->set_next(next);
orig->set_size(size);
get_free(size) = orig;
}
memory_manager::mem_header *
memory_manager::pop_free(unsigned size)
{
ensure_block(size);
mem_header *block = get_free(size);
get_free(size) = block->next();
block->remove();
return block;
}
} // namespace kutil

View File

@@ -0,0 +1,69 @@
#pragma once
/// \file memory_manager.h
/// A buddy allocator and related definitions.
#include <stddef.h>
namespace kutil {
/// Manager for allocation of virtual memory.
class memory_manager
{
public:
using grow_callback = void (*)(void *start, size_t length);
/// Default constructor. Creates an invalid manager.
memory_manager();
/// Constructor.
/// \arg start Pointer to the start of the heap to be managed
/// \arg grow_cb Function pointer to grow the heap size
memory_manager(void *start, grow_callback grow_cb);
/// Allocate memory from the area managed.
/// \arg length The amount of memory to allocate, in bytes
/// \returns A pointer to the allocated memory, or nullptr if
/// allocation failed.
void * allocate(size_t length);
/// Free a previous allocation.
/// \arg p A pointer previously retuned by allocate()
void free(void *p);
/// Minimum block size is (2^min_size). Must be at least 6.
static const unsigned min_size = 6;
/// Maximum block size is (2^max_size). Must be less than 64.
static const unsigned max_size = 16;
protected:
class mem_header;
/// Expand the size of memory
void grow_memory();
/// Ensure there is a block of a given size, recursively splitting
/// \arg size Size category of the block we want
void ensure_block(unsigned size);
/// Helper accessor for the list of blocks of a given size
/// \arg size Size category of the block we want
/// \returns A mutable reference to the head of the list
mem_header *& get_free(unsigned size) { return m_free[size - min_size]; }
/// Helper to get a block of the given size, growing if necessary
/// \arg size Size category of the block we want
/// \returns A detached block of the given size
mem_header * pop_free(unsigned size);
mem_header *m_free[max_size - min_size];
void *m_start;
size_t m_length;
grow_callback m_grow;
memory_manager(const memory_manager &) = delete;
};
} // namespace kutil

View File

@@ -0,0 +1,12 @@
#pragma once
namespace kutil {
constexpr uint32_t
byteswap(uint32_t x)
{
return ((x >> 24) & 0x000000ff) | ((x >> 8) & 0x0000ff00)
| ((x << 8) & 0x00ff0000) | ((x << 24) & 0xff000000);
}
}

View File

@@ -0,0 +1,164 @@
#pragma once
/// \file vector.h
/// Definition of a simple dynamic vector collection for use in kernel space
#include <algorithm>
#include <utility>
#include "kutil/memory.h"
namespace kutil {
/// A dynamic array.
template <typename T>
class vector
{
public:
/// Default constructor. Creates an empty vector with no capacity.
vector() :
m_size(0),
m_capacity(0),
m_elements(nullptr)
{}
/// Constructor. Creates an empty array with capacity.
/// \arg capacity Initial capacity to allocate
vector(size_t capacity) :
m_size(0),
m_capacity(0),
m_elements(nullptr)
{
set_capacity(capacity);
}
/// Copy constructor. Allocates a copy of the other's array.
vector(const vector& other) :
m_size(0),
m_capacity(0),
m_elements(nullptr)
{
set_capacity(other.m_capacity);
kutil::memcpy(m_elements, other.m_elements, other.m_size * sizeof(T));
m_size = other.m_size;
}
/// Move constructor. Takes ownership of the other's array.
vector(vector&& other) :
m_size(other.m_size),
m_capacity(other.m_capacity),
m_elements(other.m_elements)
{
other.m_size = 0;
other.m_capacity = 0;
other.m_elements = nullptr;
}
/// Destructor. Destroys any remaining items in the array.
~vector()
{
while (m_size) remove();
delete [] m_elements;
}
/// Get the size of the array.
/// \returns The number of elements in the array
inline size_t count() const { return m_size; }
/// Access an element in the array.
inline T & operator[] (size_t i) { return m_elements[i]; }
/// Access an element in the array.
inline const T & operator[] (size_t i) const { return m_elements[i]; }
/// Get a pointer to the beginning for iteration.
/// \returns A pointer to the beginning of the array
T * begin() { return m_elements; }
/// Get a pointer to the beginning for iteration.
/// \returns A pointer to the beginning of the array
const T * begin() const { return m_elements; }
/// Get a pointer to the end for iteration.
/// \returns A pointer to the end of the array
T * end() { return m_elements + m_size; }
/// Get a pointer to the end for iteration.
/// \returns A pointer to the end of the array
const T * end() const { return m_elements + m_size; }
/// Add an item onto the array by copying it.
/// \arg item The item to add
/// \returns A reference to the added item
T & append(const T& item)
{
ensure_capacity(m_size + 1);
m_elements[m_size] = item;
return m_elements[m_size++];
}
/// Construct an item in place onto the end of the array.
/// \returns A reference to the added item
template <typename... Args>
T & emplace(Args&&... args)
{
ensure_capacity(m_size + 1);
new (&m_elements[m_size]) T(std::forward<Args>(args)...);
return m_elements[m_size++];
}
/// Remove an item from the end of the array.
void remove()
{
m_size -= 1;
m_elements[m_size].~T();
}
/// Set the size of the array. Any new items are default
/// constructed. The array is realloced if needed.
/// \arg size The new size
void set_size(size_t size)
{
ensure_capacity(size);
for (size_t i = m_size; i < size; ++i)
new (&m_elements[i]) T;
m_size = size;
}
/// Ensure the array will fit an item.
/// \arg size Size of the array
void ensure_capacity(size_t size)
{
if (m_capacity >= size) return;
size_t capacity = m_capacity;
while (capacity < size) {
if (capacity == 0) capacity = 4;
else capacity *= 2;
}
set_capacity(capacity);
}
/// Reallocate the array. Copy over any old elements that will
/// fit into the new array. The rest are destroyed.
/// \arg capacity Number of elements to allocate
void set_capacity(size_t capacity)
{
T *new_array = reinterpret_cast<T *>(malloc(capacity * sizeof(T)));
size_t size = std::min(capacity, m_size);
kutil::memcpy(new_array, m_elements, size * sizeof(T));
while (size < m_size) remove();
m_size = size;
m_capacity = capacity;
delete [] m_elements;
m_elements = new_array;
}
private:
size_t m_size;
size_t m_capacity;
T *m_elements;
};
} // namespace kutil

View File

@@ -0,0 +1,14 @@
def configure(ctx):
pass
def build(bld):
sources = bld.path.ant_glob("**/*.cpp")
bld.stlib(
source = sources,
name = 'kutil',
target = 'kutil',
)
# vim: ft=python et