Files
jsix/src/kernel/memory_bootstrap.cpp
Justin C. Miller ac19d3f532 Allow page table copying and unmapping
Lots of rearranging in page_manager as well, moving constants out as
well as helper structs.
2019-03-03 01:52:21 -08:00

371 lines
9.8 KiB
C++

#include <algorithm>
#include <utility>
#include "kutil/address_manager.h"
#include "kutil/assert.h"
#include "kutil/frame_allocator.h"
#include "kutil/heap_manager.h"
#include "io.h"
#include "log.h"
#include "page_manager.h"
using kutil::frame_block;
using kutil::frame_block_flags;
using kutil::frame_block_list;
using memory::frame_size;
using memory::kernel_offset;
using memory::page_offset;
static const unsigned ident_page_flags = 0xb;
kutil::frame_allocator g_frame_allocator;
kutil::address_manager g_kernel_address_manager;
kutil::heap_manager g_kernel_heap_manager;
void * mm_grow_callback(size_t length)
{
kassert(length % frame_size == 0,
"Heap manager requested a fractional page.");
size_t pages = length / frame_size;
log::info(logs::memory, "Heap manager growing heap by %d pages.", pages);
uintptr_t addr = g_kernel_address_manager.allocate(length);
g_page_manager.map_pages(addr, pages);
return reinterpret_cast<void *>(addr);
}
namespace {
// Page-by-page initial allocator for the initial frame_block allocator
struct page_consumer
{
page_consumer(uintptr_t start, unsigned count, unsigned used = 0) :
current(start + used * frame_size),
used(used),
max(count) {}
void * get_page() {
kassert(used++ < max, "page_consumer ran out of pages");
void *retval = reinterpret_cast<void *>(current);
current += frame_size;
return retval;
}
void * operator()(size_t size) {
kassert(size == frame_size, "page_consumer used with non-page size!");
return get_page();
}
unsigned left() const { return max - used; }
uintptr_t current;
unsigned used, max;
};
using block_allocator =
kutil::slab_allocator<kutil::frame_block, page_consumer &>;
using region_allocator =
kutil::slab_allocator<kutil::buddy_region, page_consumer &>;
}
enum class efi_memory_type : uint32_t
{
reserved,
loader_code,
loader_data,
boot_services_code,
boot_services_data,
runtime_services_code,
runtime_services_data,
available,
unusable,
acpi_reclaim,
acpi_nvs,
mmio,
mmio_port,
pal_code,
persistent,
efi_max,
popcorn_kernel = 0x80000000,
popcorn_data,
popcorn_initrd,
popcorn_scratch,
popcorn_max
};
struct efi_memory_descriptor
{
efi_memory_type type;
uint32_t pad;
uint64_t physical_start;
uint64_t virtual_start;
uint64_t pages;
uint64_t flags;
};
static const efi_memory_descriptor *
desc_incr(const efi_memory_descriptor *d, size_t desc_length)
{
return reinterpret_cast<const efi_memory_descriptor *>(
reinterpret_cast<const uint8_t *>(d) + desc_length);
}
void
gather_block_lists(
block_allocator &allocator,
frame_block_list &used,
frame_block_list &free,
const void *memory_map,
size_t map_length,
size_t desc_length)
{
efi_memory_descriptor const *desc = reinterpret_cast<efi_memory_descriptor const *>(memory_map);
efi_memory_descriptor const *end = desc_incr(desc, map_length);
while (desc < end) {
auto *block = allocator.pop();
block->address = desc->physical_start;
block->count = desc->pages;
bool block_used;
switch (desc->type) {
case efi_memory_type::loader_code:
case efi_memory_type::loader_data:
block_used = true;
block->flags = frame_block_flags::pending_free;
break;
case efi_memory_type::boot_services_code:
case efi_memory_type::boot_services_data:
case efi_memory_type::available:
block_used = false;
break;
case efi_memory_type::acpi_reclaim:
block_used = true;
block->flags =
frame_block_flags::acpi_wait |
frame_block_flags::map_ident;
break;
case efi_memory_type::persistent:
block_used = false;
block->flags = frame_block_flags::nonvolatile;
break;
case efi_memory_type::popcorn_kernel:
block_used = true;
block->flags =
frame_block_flags::permanent |
frame_block_flags::map_kernel;
break;
case efi_memory_type::popcorn_data:
case efi_memory_type::popcorn_initrd:
block_used = true;
block->flags =
frame_block_flags::pending_free |
frame_block_flags::map_kernel;
break;
case efi_memory_type::popcorn_scratch:
block_used = true;
block->flags = frame_block_flags::map_offset;
break;
default:
block_used = true;
block->flags = frame_block_flags::permanent;
break;
}
if (block_used)
used.push_back(block);
else
free.push_back(block);
desc = desc_incr(desc, desc_length);
}
}
static unsigned
check_needs_page_ident(page_table *table, unsigned index, page_table **free_pages)
{
if ((table->entries[index] & 0x1) == 1) return 0;
kassert(*free_pages, "check_needs_page_ident needed to allocate but had no free pages");
page_table *new_table = (*free_pages)++;
for (int i=0; i<512; ++i) new_table->entries[i] = 0;
table->entries[index] = reinterpret_cast<uint64_t>(new_table) | ident_page_flags;
return 1;
}
static unsigned
page_in_ident(
page_table *pml4,
uint64_t phys_addr,
uint64_t virt_addr,
uint64_t count,
page_table *free_pages)
{
page_table_indices idx{virt_addr};
page_table *tables[4] = {pml4, nullptr, nullptr, nullptr};
unsigned pages_consumed = 0;
for (; idx[0] < 512; idx[0] += 1) {
pages_consumed += check_needs_page_ident(tables[0], idx[0], &free_pages);
tables[1] = reinterpret_cast<page_table *>(
tables[0]->entries[idx[0]] & ~0xfffull);
for (; idx[1] < 512; idx[1] += 1, idx[2] = 0, idx[3] = 0) {
pages_consumed += check_needs_page_ident(tables[1], idx[1], &free_pages);
tables[2] = reinterpret_cast<page_table *>(
tables[1]->entries[idx[1]] & ~0xfffull);
for (; idx[2] < 512; idx[2] += 1, idx[3] = 0) {
if (idx[3] == 0 &&
count >= 512 &&
tables[2]->get(idx[2]) == nullptr) {
// Do a 2MiB page instead
tables[2]->entries[idx[2]] = phys_addr | 0x80 | ident_page_flags;
phys_addr += frame_size * 512;
count -= 512;
if (count == 0) return pages_consumed;
continue;
}
pages_consumed += check_needs_page_ident(tables[2], idx[2], &free_pages);
tables[3] = reinterpret_cast<page_table *>(
tables[2]->entries[idx[2]] & ~0xfffull);
for (; idx[3] < 512; idx[3] += 1) {
tables[3]->entries[idx[3]] = phys_addr | ident_page_flags;
phys_addr += frame_size;
if (--count == 0) return pages_consumed;
}
}
}
}
kassert(0, "Ran to end of page_in_ident");
return 0; // Cannot reach
}
void
memory_initialize(uint16_t scratch_pages, const void *memory_map, size_t map_length, size_t desc_length)
{
// make sure the options we want in CR4 are set
uint64_t cr4;
__asm__ __volatile__ ( "mov %%cr4, %0" : "=r" (cr4) );
cr4 |= 0x00080; // Enable global pages
cr4 |= 0x00200; // Enable FXSAVE/FXRSTOR
cr4 |= 0x20000; // Enable PCIDs
__asm__ __volatile__ ( "mov %0, %%cr4" :: "r" (cr4) );
// The bootloader reserved "scratch_pages" pages for page tables and
// scratch space, which we'll use to bootstrap. The first one is the
// already-installed PML4, so grab it from CR3.
uint64_t scratch_phys;
__asm__ __volatile__ ( "mov %%cr3, %0" : "=r" (scratch_phys) );
scratch_phys &= ~0xfffull;
// The tables are ident-mapped currently, so the cr3 physical address works. But let's
// get them into the offset-mapped area asap.
page_table *tables = reinterpret_cast<page_table *>(scratch_phys);
uintptr_t scratch_virt = scratch_phys + page_offset;
uint64_t used_pages = 1; // starts with PML4
used_pages += page_in_ident(
&tables[0],
scratch_phys,
scratch_virt,
scratch_pages,
tables + used_pages);
// Make sure the page table is finished updating before we write to memory
__sync_synchronize();
io_wait();
// We now have pages starting at "scratch_virt" to bootstrap ourselves. Start by
// taking inventory of free pages.
page_consumer allocator(scratch_virt, scratch_pages, used_pages);
block_allocator block_slab(frame_size, allocator);
frame_block_list used;
frame_block_list free;
gather_block_lists(block_slab, used, free, memory_map, map_length, desc_length);
block_slab.allocate(); // Make sure we have extra
// Now go back through these lists and consolidate
block_slab.append(frame_block::consolidate(free));
region_allocator region_slab(frame_size, allocator);
region_slab.allocate(); // Allocate some buddy regions for the address_manager
kutil::address_manager *am =
new (&g_kernel_address_manager) kutil::address_manager(std::move(region_slab));
am->add_regions(kernel_offset, page_offset - kernel_offset);
// Finally, build an acutal set of kernel page tables that just contains
// what the kernel actually has mapped, but making everything writable
// (especially the page tables themselves)
page_table *pml4 = reinterpret_cast<page_table *>(allocator.get_page());
for (int i=0; i<512; ++i) pml4->entries[i] = 0;
kutil::frame_allocator *fa =
new (&g_frame_allocator) kutil::frame_allocator(std::move(block_slab));
page_manager *pm = new (&g_page_manager) page_manager(*fa, *am);
// Give the rest to the page_manager's cache for use in page_in
pm->free_table_pages(
reinterpret_cast<void *>(allocator.current),
allocator.left());
for (auto *block : used) {
uintptr_t virt_addr = 0;
switch (block->flags & frame_block_flags::map_mask) {
case frame_block_flags::map_ident:
virt_addr = block->address;
break;
case frame_block_flags::map_kernel:
virt_addr = block->address + kernel_offset;
if (block->flags && frame_block_flags::permanent)
am->mark_permanent(virt_addr, block->count * frame_size);
else
am->mark(virt_addr, block->count * frame_size);
break;
case frame_block_flags::map_offset:
virt_addr = block->address + page_offset;
break;
default:
break;
}
block->flags -= frame_block_flags::map_mask;
if (virt_addr)
pm->page_in(pml4, block->address, virt_addr, block->count);
}
fa->init(std::move(free), std::move(used));
// Put our new PML4 into CR3 to start using it
page_manager::set_pml4(pml4);
pm->m_kernel_pml4 = pml4;
// Set the heap manager
new (&g_kernel_heap_manager) kutil::heap_manager(mm_grow_callback);
kutil::setup::set_heap(&g_kernel_heap_manager);
}