Files
jsix/src/kernel/device_manager.cpp
Justin C. Miller 5f88f5ed02 [kernel] Move kassert out of kutil
Continuing moving things out of kutil. The assert as implemented could
only ever work in the kernel, so remaining kutil uses of kassert have
been moved to including standard C assert instead.

Along the way, kassert was broken out into panic::panic and kassert,
and the panic.serial namespace was renamed panicking.
2022-01-02 01:38:04 -08:00

440 lines
11 KiB
C++

#include <stddef.h>
#include <stdint.h>
#include "assert.h"
#include "acpi_tables.h"
#include "apic.h"
#include "clock.h"
#include "console.h"
#include "device_manager.h"
#include "interrupts.h"
#include "kernel_memory.h"
#include "log.h"
#include "memory.h"
#include "objects/endpoint.h"
#include "serial.h"
static endpoint * const ignore_endpoint = reinterpret_cast<endpoint*>(-1ull);
static const char expected_signature[] = "RSD PTR ";
device_manager device_manager::s_instance;
struct acpi1_rsdp
{
char signature[8];
uint8_t checksum;
char oem_id[6];
uint8_t revision;
uint32_t rsdt_address;
} __attribute__ ((packed));
struct acpi2_rsdp
{
char signature[8];
uint8_t checksum10;
char oem_id[6];
uint8_t revision;
uint32_t rsdt_address;
uint32_t length;
acpi_table_header *xsdt_address;
uint8_t checksum20;
uint8_t reserved[3];
} __attribute__ ((packed));
bool
acpi_table_header::validate(uint32_t expected_type) const
{
if (::checksum(this, length) != 0) return false;
return !expected_type || (expected_type == type);
}
device_manager::device_manager() :
m_lapic_base(0)
{
m_irqs.ensure_capacity(32);
m_irqs.set_size(16);
for (int i = 0; i < 16; ++i)
m_irqs[i] = nullptr;
m_irqs[2] = ignore_endpoint;
}
template <typename T> static const T *
check_get_table(const acpi_table_header *header)
{
kassert(header && header->validate(T::type_id), "Invalid ACPI table.");
return reinterpret_cast<const T *>(header);
}
void
device_manager::parse_acpi(const void *root_table)
{
kassert(root_table != 0, "ACPI root table pointer is null.");
const acpi1_rsdp *acpi1 = memory::to_virtual(
reinterpret_cast<const acpi1_rsdp *>(root_table));
for (int i = 0; i < sizeof(acpi1->signature); ++i)
kassert(acpi1->signature[i] == expected_signature[i],
"ACPI RSDP table signature mismatch");
uint8_t sum = checksum(acpi1, sizeof(acpi1_rsdp), 0);
kassert(sum == 0, "ACPI 1.0 RSDP checksum mismatch.");
kassert(acpi1->revision > 1, "ACPI 1.0 not supported.");
const acpi2_rsdp *acpi2 =
reinterpret_cast<const acpi2_rsdp *>(acpi1);
sum = checksum(acpi2, sizeof(acpi2_rsdp), sizeof(acpi1_rsdp));
kassert(sum == 0, "ACPI 2.0 RSDP checksum mismatch.");
load_xsdt(memory::to_virtual(acpi2->xsdt_address));
}
const device_manager::apic_nmi *
device_manager::get_lapic_nmi(uint8_t id) const
{
for (const auto &nmi : m_nmis) {
if (nmi.cpu == 0xff || nmi.cpu == id)
return &nmi;
}
return nullptr;
}
const device_manager::irq_override *
device_manager::get_irq_override(uint8_t irq) const
{
for (const auto &o : m_overrides)
if (o.source == irq) return &o;
return nullptr;
}
ioapic *
device_manager::get_ioapic(int i)
{
return (i < m_ioapics.count()) ? &m_ioapics[i] : nullptr;
}
static void
put_sig(char *into, uint32_t type)
{
for (int j=0; j<4; ++j) into[j] = reinterpret_cast<char *>(&type)[j];
}
void
device_manager::load_xsdt(const acpi_table_header *header)
{
const auto *xsdt = check_get_table<acpi_xsdt>(header);
char sig[5] = {0,0,0,0,0};
log::info(logs::device, "ACPI 2.0+ tables loading");
put_sig(sig, xsdt->header.type);
log::debug(logs::device, " Found table %s", sig);
size_t num_tables = acpi_table_entries(xsdt, sizeof(void*));
for (size_t i = 0; i < num_tables; ++i) {
const acpi_table_header *header =
memory::to_virtual(xsdt->headers[i]);
put_sig(sig, header->type);
log::debug(logs::device, " Found table %s", sig);
kassert(header->validate(), "Table failed validation.");
switch (header->type) {
case acpi_apic::type_id:
load_apic(header);
break;
case acpi_mcfg::type_id:
load_mcfg(header);
break;
case acpi_hpet::type_id:
load_hpet(header);
break;
default:
break;
}
}
}
void
device_manager::load_apic(const acpi_table_header *header)
{
const auto *apic = check_get_table<acpi_apic>(header);
m_lapic_base = apic->local_address;
size_t count = acpi_table_entries(apic, 1);
uint8_t const *p = apic->controller_data;
uint8_t const *end = p + count;
// Pass one: count objcts
unsigned num_lapics = 0;
unsigned num_ioapics = 0;
unsigned num_overrides = 0;
unsigned num_nmis = 0;
while (p < end) {
const uint8_t type = p[0];
const uint8_t length = p[1];
switch (type) {
case 0: ++num_lapics; break;
case 1: ++num_ioapics; break;
case 2: ++num_overrides; break;
case 4: ++num_nmis; break;
default: break;
}
p += length;
}
m_apic_ids.set_capacity(num_lapics);
m_ioapics.set_capacity(num_ioapics);
m_overrides.set_capacity(num_overrides);
m_nmis.set_capacity(num_nmis);
// Pass two: configure objects
p = apic->controller_data;
while (p < end) {
const uint8_t type = p[0];
const uint8_t length = p[1];
switch (type) {
case 0: { // Local APIC
uint8_t uid = read_from<uint8_t>(p+2);
uint8_t id = read_from<uint8_t>(p+3);
m_apic_ids.append(id);
log::debug(logs::device, " Local APIC uid %x id %x", uid, id);
}
break;
case 1: { // I/O APIC
uintptr_t base = read_from<uint32_t>(p+4);
uint32_t base_gsi = read_from<uint32_t>(p+8);
m_ioapics.emplace(base, base_gsi);
log::debug(logs::device, " IO APIC gsi %x base %x", base_gsi, base);
}
break;
case 2: { // Interrupt source override
irq_override o;
o.source = read_from<uint8_t>(p+3);
o.gsi = read_from<uint32_t>(p+4);
o.flags = read_from<uint16_t>(p+8);
m_overrides.append(o);
log::debug(logs::device, " Intr source override IRQ %d -> %d Pol %d Tri %d",
o.source, o.gsi, (o.flags & 0x3), ((o.flags >> 2) & 0x3));
}
break;
case 4: {// LAPIC NMI
apic_nmi nmi;
nmi.cpu = read_from<uint8_t>(p + 2);
nmi.lint = read_from<uint8_t>(p + 5);
nmi.flags = read_from<uint16_t>(p + 3);
m_nmis.append(nmi);
log::debug(logs::device, " LAPIC NMI Proc %02x LINT%d Pol %d Tri %d",
nmi.cpu, nmi.lint, nmi.flags & 0x3, (nmi.flags >> 2) & 0x3);
}
break;
default:
log::debug(logs::device, " APIC entry type %d", type);
}
p += length;
}
m_ioapics[0].mask(3, false);
m_ioapics[0].mask(4, false);
}
void
device_manager::load_mcfg(const acpi_table_header *header)
{
const auto *mcfg = check_get_table<acpi_mcfg>(header);
size_t count = acpi_table_entries(mcfg, sizeof(acpi_mcfg_entry));
m_pci.set_size(count);
m_devices.set_capacity(16);
for (unsigned i = 0; i < count; ++i) {
const acpi_mcfg_entry &mcfge = mcfg->entries[i];
m_pci[i].group = mcfge.group;
m_pci[i].bus_start = mcfge.bus_start;
m_pci[i].bus_end = mcfge.bus_end;
m_pci[i].base = memory::to_virtual<uint32_t>(mcfge.base);
log::debug(logs::device, " Found MCFG entry: base %lx group %d bus %d-%d",
mcfge.base, mcfge.group, mcfge.bus_start, mcfge.bus_end);
}
probe_pci();
}
void
device_manager::load_hpet(const acpi_table_header *header)
{
const auto *hpet = check_get_table<acpi_hpet>(header);
log::debug(logs::device, " Found HPET device #%3d: base %016lx pmin %d attr %02x",
hpet->index, hpet->base_address.address, hpet->periodic_min, hpet->attributes);
uint32_t hwid = hpet->hardware_id;
uint8_t rev_id = hwid & 0xff;
uint8_t comparators = (hwid >> 8) & 0x1f;
uint8_t count_size_cap = (hwid >> 13) & 1;
uint8_t legacy_replacement = (hwid >> 15) & 1;
uint32_t pci_vendor_id = (hwid >> 16);
log::debug(logs::device, " rev:%02d comparators:%02d count_size_cap:%1d legacy_repl:%1d",
rev_id, comparators, count_size_cap, legacy_replacement);
log::debug(logs::device, " pci vendor id: %04x", pci_vendor_id);
m_hpets.emplace(hpet->index,
reinterpret_cast<uint64_t*>(hpet->base_address.address + ::memory::page_offset));
}
void
device_manager::probe_pci()
{
for (auto &pci : m_pci) {
log::debug(logs::device, "Probing PCI group at base %016lx", pci.base);
for (int bus = pci.bus_start; bus <= pci.bus_end; ++bus) {
for (int dev = 0; dev < 32; ++dev) {
if (!pci.has_device(bus, dev, 0)) continue;
auto &d0 = m_devices.emplace(pci, bus, dev, 0);
if (!d0.multi()) continue;
for (int i = 1; i < 8; ++i) {
if (pci.has_device(bus, dev, i))
m_devices.emplace(pci, bus, dev, i);
}
}
}
}
}
static uint64_t
fake_clock_source(void*)
{
static uint64_t value = 0;
return value++;
}
void
device_manager::init_drivers()
{
// Eventually this should be e.g. a lookup into a loadable driver list
// for now, just look for AHCI devices
/*
for (auto &device : m_devices) {
if (device.devclass() != 1 || device.subclass() != 6)
continue;
if (device.progif() != 1) {
log::warn(logs::device, "Found SATA device %d:%d:%d, but not an AHCI interface.",
device.bus(), device.device(), device.function());
}
ahcid.register_device(&device);
}
*/
clock *master_clock = nullptr;
if (m_hpets.count() > 0) {
hpet &h = m_hpets[0];
h.enable();
// becomes the singleton
master_clock = new clock(h.rate(), hpet_clock_source, &h);
log::info(logs::clock, "Created master clock using HPET 0: Rate %d", h.rate());
} else {
//TODO: Other clocks, APIC clock?
master_clock = new clock(5000, fake_clock_source, nullptr);
}
kassert(master_clock, "Failed to allocate master clock");
}
bool
device_manager::dispatch_irq(unsigned irq)
{
if (irq == 4) {
g_com1.handle_interrupt();
return true;
}
if (irq >= m_irqs.count())
return false;
endpoint *e = m_irqs[irq];
if (!e || e == ignore_endpoint)
return e == ignore_endpoint;
e->signal_irq(irq);
return true;
}
bool
device_manager::bind_irq(unsigned irq, endpoint *target)
{
// TODO: grow if under max size
if (irq >= m_irqs.count())
return false;
m_irqs[irq]= target;
return true;
}
void
device_manager::unbind_irqs(endpoint *target)
{
const size_t count = m_irqs.count();
for (size_t i = 0; i < count; ++i) {
if (m_irqs[i] == target)
m_irqs[i] = nullptr;
}
}
bool
device_manager::allocate_msi(const char *name, pci_device &device, irq_callback cb, void *data)
{
/*
// TODO: find gaps to fill
uint8_t irq = m_irqs.count();
isr vector = isr::irq00 + irq;
m_irqs.append({name, cb, data});
log::debug(logs::device, "Allocating IRQ %02x to %s.", irq, name);
device.write_msi_regs(
0xFEE00000,
static_cast<uint16_t>(vector));
*/
return true;
}
void
device_manager::register_block_device(block_device *blockdev)
{
m_blockdevs.append(blockdev);
}