Files
jsix/src/kernel/scheduler.cpp
Justin C. Miller 24ccf65aba WIP ring3
2018-05-21 09:07:52 -07:00

93 lines
2.2 KiB
C++

#include "apic.h"
#include "console.h"
#include "cpu.h"
#include "gdt.h"
#include "interrupts.h"
#include "log.h"
#include "scheduler.h"
scheduler scheduler::s_instance(nullptr);
static const uint32_t quantum = 5000000;
const int stack_size = 0x1000;
char taskAstack0[stack_size];
char taskAstack3[stack_size];
char taskBstack0[stack_size];
char taskBstack3[stack_size];
uint64_t taskAcount = 0;
extern "C" void taskA();
void taskB()
{
while (1);
}
scheduler::scheduler(lapic *apic) :
m_apic(apic),
m_current(0)
{
m_processes.ensure_capacity(50);
}
static process
create_process(uint16_t pid, void *stack0, void *stack3, void (*rip)())
{
uint64_t flags;
__asm__ __volatile__ ( "pushf; pop %0" : "=r" (flags) );
// This is a hack for now, until we get a lot more set up.
// I just want to see task switching working inside ring0 first
uint16_t kcs = (1 << 3) | 0;
uint16_t cs = (5 << 3) | 3;
uint16_t kss = (2 << 3) | 0;
uint16_t ss = (4 << 3) | 3;
void *sp0 = kutil::offset_pointer(stack0, stack_size);
cpu_state *state = reinterpret_cast<cpu_state *>(sp0) - 1;
kutil::memset(state, 0, sizeof(cpu_state));
state->ds = state->ss = ss;
state->cs = cs;
state->rflags = 0x202; // testing. TODO: 0x202
state->rip = reinterpret_cast<uint64_t>(rip);
void *sp3 = kutil::offset_pointer(stack3, stack_size);
state->user_rsp = reinterpret_cast<uint64_t>(sp3);
log::debug(logs::task, "Creating PID %d:", pid);
log::debug(logs::task, " RSP0 %016lx", state);
log::debug(logs::task, " RSP3 %016lx", sp3);
return {pid, reinterpret_cast<addr_t>(state)};
}
void
scheduler::start()
{
m_apic->enable_timer(isr::isrTimer, 128, quantum, false);
m_processes.append({0, 0}); // The kernel idle task
m_processes.append(create_process(1, &taskAstack0[0], &taskAstack3[0], &taskA));
m_processes.append(create_process(2, &taskBstack0[0], &taskBstack3[0], &taskB));
}
addr_t
scheduler::tick(addr_t rsp0)
{
log::debug(logs::task, "Scheduler tick.");
m_processes[m_current].rsp = rsp0;
m_current = (m_current + 1) % m_processes.count();
rsp0 = m_processes[m_current].rsp;
// Set rsp0 to after the end of the about-to-be-popped cpu state
tss_set_stack(0, rsp0 + sizeof(cpu_state));
m_apic->reset_timer(quantum);
return rsp0;
}