Files
jsix/src/boot/memory.c
2018-04-28 02:12:08 -07:00

207 lines
5.5 KiB
C

#include <efi.h>
#include <efilib.h>
#include <stddef.h>
#include "loader.h"
#include "memory.h"
#include "utility.h"
#define INCREMENT_DESC(p, b) (EFI_MEMORY_DESCRIPTOR*)(((uint8_t*)(p))+(b))
size_t fixup_pointer_index = 0;
void **fixup_pointers[64];
uint64_t *new_pml4 = 0;
const CHAR16 *memory_type_names[] = {
L"EfiReservedMemoryType",
L"EfiLoaderCode",
L"EfiLoaderData",
L"EfiBootServicesCode",
L"EfiBootServicesData",
L"EfiRuntimeServicesCode",
L"EfiRuntimeServicesData",
L"EfiConventionalMemory",
L"EfiUnusableMemory",
L"EfiACPIReclaimMemory",
L"EfiACPIMemoryNVS",
L"EfiMemoryMappedIO",
L"EfiMemoryMappedIOPortSpace",
L"EfiPalCode",
L"EfiPersistentMemory",
};
static const CHAR16 *
memory_type_name(UINT32 value)
{
if (value >= (sizeof(memory_type_names) / sizeof(CHAR16 *))) {
if (value == KERNEL_DATA_MEMTYPE) return L"Kernel Data";
else if (value == KERNEL_MEMTYPE) return L"Kernel Image";
else return L"Bad Type Value";
}
return memory_type_names[value];
}
void EFIAPI
memory_update_marked_addresses(EFI_EVENT UNUSED *event, void *context)
{
EFI_RUNTIME_SERVICES *runsvc = (EFI_RUNTIME_SERVICES*)context;
for (size_t i = 0; i < fixup_pointer_index; ++i) {
if (fixup_pointers[i])
runsvc->ConvertPointer(0, fixup_pointers[i]);
}
}
EFI_STATUS
memory_init_pointer_fixup(EFI_BOOT_SERVICES *bootsvc, EFI_RUNTIME_SERVICES *runsvc)
{
EFI_STATUS status;
EFI_EVENT event;
status = bootsvc->CreateEvent(
EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE,
TPL_CALLBACK,
(EFI_EVENT_NOTIFY)&memory_update_marked_addresses,
runsvc,
&event);
CHECK_EFI_STATUS_OR_RETURN(status, "Failed to initialize pointer update event.");
// Reserve a page for our replacement PML4, plus some pages for the kernel to use
// as page tables while it gets started.
EFI_PHYSICAL_ADDRESS addr = 0;
status = bootsvc->AllocatePages(AllocateAnyPages, EfiLoaderData, 16, &addr);
CHECK_EFI_STATUS_OR_RETURN(status, "Failed to allocate page table pages.");
new_pml4 = (uint64_t *)addr;
return EFI_SUCCESS;
}
void
memory_mark_pointer_fixup(void **p)
{
if (fixup_pointer_index == 0) {
const size_t count = sizeof(fixup_pointers) / sizeof(void*);
for (size_t i = 0; i < count; ++i) fixup_pointers[i] = 0;
}
fixup_pointers[fixup_pointer_index++] = p;
}
void
copy_desc(EFI_MEMORY_DESCRIPTOR *src, EFI_MEMORY_DESCRIPTOR *dst, size_t len)
{
uint8_t *srcb = (uint8_t *)src;
uint8_t *dstb = (uint8_t *)dst;
uint8_t *endb = srcb + len;
while (srcb < endb)
*dstb++ = *srcb++;
}
EFI_STATUS
memory_get_map_length(EFI_BOOT_SERVICES *bootsvc, size_t *size)
{
if (size == NULL)
return EFI_INVALID_PARAMETER;
EFI_STATUS status;
size_t key, desc_size;
uint32_t desc_version;
*size = 0;
status = bootsvc->GetMemoryMap(size, 0, &key, &desc_size, &desc_version);
if (status != EFI_BUFFER_TOO_SMALL) {
CHECK_EFI_STATUS_OR_RETURN(status, "Failed to get memory map size");
}
return EFI_SUCCESS;
}
EFI_STATUS
memory_get_map(EFI_BOOT_SERVICES *bootsvc, struct memory_map *map)
{
EFI_STATUS status;
if (map == NULL)
return EFI_INVALID_PARAMETER;
size_t needs_size = 0;
status = memory_get_map_length(bootsvc, &needs_size);
if (EFI_ERROR(status)) return status;
if (map->length < needs_size)
return EFI_BUFFER_TOO_SMALL;
status = bootsvc->GetMemoryMap(&map->length, map->entries, &map->key, &map->size, &map->version);
CHECK_EFI_STATUS_OR_RETURN(status, "Failed to load memory map");
return EFI_SUCCESS;
}
EFI_STATUS
memory_dump_map(struct memory_map *map)
{
if (map == NULL)
return EFI_INVALID_PARAMETER;
const size_t count = map->length / map->size;
con_printf(L"Memory map:\n");
con_printf(L"\t Descriptor Count: %d (%d bytes)\n", count, map->length);
con_printf(L"\t Descriptor Size: %d bytes\n", map->size);
con_printf(L"\t Type offset: %d\n\n", offsetof(EFI_MEMORY_DESCRIPTOR, Type));
EFI_MEMORY_DESCRIPTOR *end = INCREMENT_DESC(map->entries, map->length);
EFI_MEMORY_DESCRIPTOR *d = map->entries;
while (d < end) {
int runtime = (d->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME;
con_printf(L"%s%s ", memory_type_name(d->Type), runtime ? L"*" : L" ");
con_printf(L"%lx ", d->PhysicalStart);
con_printf(L"%lx ", d->VirtualStart);
con_printf(L"[%4d]\n", d->NumberOfPages);
d = INCREMENT_DESC(d, map->size);
}
return EFI_SUCCESS;
}
void
memory_virtualize(EFI_RUNTIME_SERVICES *runsvc, struct memory_map *map)
{
memory_mark_pointer_fixup((void **)&runsvc);
memory_mark_pointer_fixup((void **)&map);
// Get the pointer to the start of PML4
uint64_t* cr3 = 0;
__asm__ __volatile__ ( "mov %%cr3, %0" : "=r" (cr3) );
// PML4 is indexed with bits 39:47 of the virtual address
uint64_t offset = (KERNEL_VIRT_ADDRESS >> 39) & 0x1ff;
// Double map the lower half pages that are present into the higher half
for (unsigned i = 0; i < offset; ++i) {
if (cr3[i] & 0x1)
new_pml4[i] = new_pml4[offset+i] = cr3[i];
else
new_pml4[i] = new_pml4[offset+i] = 0;
}
// Write our new PML4 pointer back to CR3
__asm__ __volatile__ ( "mov %0, %%cr3" :: "r" (new_pml4) );
EFI_MEMORY_DESCRIPTOR *end = INCREMENT_DESC(map->entries, map->length);
EFI_MEMORY_DESCRIPTOR *d = map->entries;
while (d < end) {
switch (d->Type) {
case KERNEL_MEMTYPE:
case KERNEL_FONT_MEMTYPE:
case KERNEL_DATA_MEMTYPE:
d->Attribute |= EFI_MEMORY_RUNTIME;
default:
if (d->Attribute & EFI_MEMORY_RUNTIME) {
d->VirtualStart = d->PhysicalStart + KERNEL_VIRT_ADDRESS;
}
}
d = INCREMENT_DESC(d, map->size);
}
runsvc->SetVirtualAddressMap(map->length, map->size, map->version, map->entries);
}