This is the first of two rather big changes to clean up includes
throughout the project. In this commit, the implicit semi-dependency on
libc that bonnibel adds to every module is removed. Previously, I was
sloppy with includes of libc headers and include directory order. Now,
the freestanding headers from libc are split out into libc_free, and an
implicit real dependency is added onto this module, unless `no_libc` is
set to `True`. The full libc needs to be explicitly specified as a
dependency to be used.
Several things needed to change in order to do this:
- Many places use `memset` or `memcpy` that cannot depend on libc. The
kernel has basic implementations of them itself for this reason. Now
those functions are moved into the lower-level `j6/memutils.h`, and
libc merely references them. Other modules are now free to reference
those functions from libj6 instead.
- The kernel's `assert.h` was renamed kassert.h (matching its `kassert`
function) so that the new `util/assert.h` can use `__has_include` to
detect it and make sure the `assert` macro is usable in libutil code.
- Several implementation header files under `__libj6/` also moved under
the new libc_free.
- A new `include_phase` property has been added to modules for Bonnibel,
which can be "normal" (default) or "late" which uses `-idirafter`
instead of `-I` for includes.
- Since `<utility>` and `<new>` are not freestanding, implementations of
`remove_reference`, `forward`, `move`, and `swap` were added to the
`util` namespace to replace those from `std`, and `util/new.h` was
added to declare `operator new` and `operator delete`.
This new libc is mostly from scratch, with *printf() functions provided
by Marco Paland and Eyal Rozenberg's tiny printf library, and malloc and
friends provided by dlmalloc.
The great header shift: It didn't make sense to regenerate headers for
the same module for every target (boot/kernel/user) it appeared in. And
now that core headers are out of src/include, this was going to cause
problems for the new libc changes I've been working on. So I went back
to re-design how module headers work.
Pre-requisites:
- A module's public headers should all be available in one location, not
tied to target.
- No accidental includes. Another module should not be able to include
anything (creating an implicit dependency) from a module without
declaring an explicit dependency.
- Exception to the previous: libc's headers should be available to all,
at least for the freestanding headers.
New system:
- A new "public_headers" property of module declares all public headers
that should be available to dependant modules
- All public headers (after possible processing) are installed relative
to build/include/<module> with the same path as their source
- This also means no "include" dir in modules is necessary. If a header
should be included as <j6/types.h> then its source should be
src/libraries/j6/j6/types.h - this caused the most churn as all public
header sources moved one directory up.
- The "includes" property of a module is local only to that module now,
it does not create any implicit public interface
Other changes:
- The bonnibel concept of sources changed: instead of sources having
actions, they themselves are an instance of a (sub)class of Source,
which provides all the necessary information itself.
- Along with the above, rule names were standardized into <type>.<ext>,
eg "compile.cpp" or "parse.cog"
- cog and cogflags variables moved from per-target scope to global scope
in the build files.
- libc gained a more dynamic .module file
While bonnibel already had the concept of a manifest, which controls
what goes into the built disk image, the bootloader still had filenames
hard-coded. Now bonnibel creates a 'jsix_boot.dat' file that tells the
bootloader what it should load.
Changes include:
- Modules have two new fields: location and description. location is
their intended directory on the EFI boot volume. description is
self-explanatory, and is used in log messages.
- New class, boot::bootconfig, implements reading of jsix_boot.dat
- New header, bootproto/bootconfig.h, specifies flags used in the
manifest and jsix_boot.dat
- New python module, bonnibel/manifest.py, encapsulates reading of the
manifest and writing jsix_boot.dat
- Syntax of the manifest changed slightly, including adding flags
- Boot and Kernel target ccflags unified a bit (this was partly due to
trying to get enum_bitfields to work in boot)
- util::counted gained operator+= and new free function util::read<T>
This change moves Bonnibel from a separate project into the jsix tree,
and alters the project configuration to be jsix-specific. (I stopped
using bonnibel for any other projects, so it's far easier to make it a
custom generator for jsix.) The build system now also uses actual python
code in `*.module` files to configure modules instead of TOML files.
Target configs (boot, kernel-mode, user-mode) now moved to separate TOML
files under `configs/` and can inherit from one another.