The previous method of VMA page tracking relied on the VMA always being
mapped at least into one space and just kept track of pages in the
spaces' page tables. This had a number of drawbacks, and the mapper
system was too complex without much benefit.
Now make VMAs themselves keep track of spaces that they're a part of,
and make them responsible for knowing what page goes where. This
simplifies most types of VMA greatly. The new vm_area_open (nee
vm_area_shared, but there is now no reason for most VMAs to be
explicitly shareable) adds a 64-ary radix tree for tracking allocated
pages.
The page_tree cannot yet handle taking pages away, but this isn't
something jsix can do yet anyway.
ktuil::vector can take a static area of memory as its initial memory,
but the case was never handled where it outgrew that memory and had to
reallocate. Steal the high bit from the capacity value to indicate the
current memory should not be kfree()'d. Also added checks in the heap
allocator to make sure pointers look valid.
Refactored out vm_space::handle_fault's allocation code into a separate
vm_space::allocate function, and reimplemented handle_fault in terms of
the new function.
Several changes were needed to make this work:
- Update the page_table::flags to understand memory caching types
- Set up the PAT MSR to add the WC option
- Make page-offset area mapped as WT
- Add all the MTRR and PAT MSRs, and log the MTRRs for verification
- Add a vm_area flag for write_combining
Create a new framebuffer driver. Also hackily passing frame buffer size
in the list of init handles to all processes and mapping the framebuffer
into all processes. Changed bootloader passing frame buffer as a module
to its own struct.
The allowed flag was janky and easy to get lost when doing page table
manipulation. All allocation goes throug vm_area now, so 'allowed' can
be dropped.
The vm_space allow() functionality was a bit janky; using VMAs for all
regions would be a lot cleaner. To that end, this change:
- Adds a "static array" ctor to kutil::vector for setting the kernel
address space's VMA list. This way a kernel heap VMA can be created
without the heap already existing.
- Splits vm_area into different subclasses depending on desired behavior
- Splits out the concept of vm_mapper which maps vm_areas to vm_spaces,
so that some kinds of VMA can be inherently single-space
- Implements VMA resizing so that userspace can grow allocations.
- Obsolete page_table_indices is removed
Also, the following bugs were fixed:
- kutil::map iterators on empty maps no longer break
- memory::page_count was doing page-align, not page-count
See: Github bug #242
See: [frobozz blog post](https://jsix.dev/posts/frobozz/)
Tags:
Finished the VMA kobject and added the related syscalls. Processes can
now allocate memory! Other changes in this commit:
- stop using g_frame_allocator and add frame_allocator::get()
- make sure to release all handles in the process dtor
- fix kutil::map::iterator never comparing to end()
vm_space no longer relies on page_manager to map pages during a page
fault. Other changes that come with this commit:
- C++ standard has been changed to C++17
- enum bitfield operators became constexpr
- enum bifrield operators can take a mix of ints and enum arguments
- added page table flags enum instead of relying on ints
- remove page_table::unmap_table and page_table::unmap_pages
As mentioned in the last commit, with processes owning spaces, there was
a weird extra space in the "kernel" process that owns the kernel
threads. Now we use that space as the global kernel space, and don't
create a separate one.
vm_space and page_table continue to take over duties from
page_manager:
- creation and deletion of address spaces / pml4s
- cross-address-space copies for endpoints
- taking over pml4 ownership from process
Also fixed the bug where the wrong process was being set in the cpu
data.
To solve: now the kernel process has its own vm_space which is not
g_kernel_space.
This is the first commit of several reworking the VM system. The main
focus is replacing page_manager's global functionality with objects
representing individual VM spaces. The main changes in this commit were:
- Adding the (as yet unused) vm_area object, which will be the main
point of control for programs to allocate or share memory.
- Replace the old vm_space with a new one based on state in its page
tables. They will also be containers for vm_areas.
- vm_space takes over from page_manager as the page fault handler
- Commented out the page walking in memory_bootstrap; I'll probably need
to recreate this functionality, but it was broken as it was.
- Split out the page_table.h implementations from page_manager.cpp into
the new page_table.cpp, updated it, and added page_table::iterator as
well.