Bonnibel will now build dynamic libraries when they're dependencies for
non-statically linked modules. It will also copy those shared libraries
into the initrd image for programs being copied into the image.
This is the second of two big changes to clean up includes throughout
the project. Since I've started using clangd with Neovim and using
VSCode's intellisense, my former strategy of copying all header files
into place in `build/include` means that the real files don't show up in
`compile_commands.json` and so display many include errors when viewing
those header files in those tools.
That setup was mostly predicated on a desire to keep directory depths
small, but really I don't think paths like `src/libraries/j6/j6` are
much better than `src/libraries/j6/include/j6`, and the latter doesn't
have the aforementioned issues, and is clearer to the casual observer as
well.
Some additional changes:
- Added a new module flag `copy_headers` for behavior similar to the old
style, but placing headers in `$module_dir/include` instead of the
global `build/include`. This was needed for external projects that
don't follow the same source/headers folder structure - in this case,
`zstd`.
- There is no longer an associated `headers.*.ninja` for each
`module.*.ninja` file, as only parsed headers need to be listed; this
functionality has been moved back into the module's ninja file.
This was kept in the kernel as a way to keep exercising the code, but it
doesn't belong there. This moves it to init, which doesn't do anything
but probe for devices currently - but at least it's executing the code
in userspace now.
The initrd image is now created by the build system, loaded by the
bootloader, and passed to srv.init, which loads it (but doesn't do
anything with it yet, so this is actually a functional regression).
This simplifies a lot of the modules code between boot and init as well:
Gone are the many subclasses of module and all the data being inline
with the module structs, except for any loaded files. Now the only
modules loaded and passed will be the initrd, and any devices only the
bootloader has knowledge of, like the UEFI framebuffer.
The great header shift: It didn't make sense to regenerate headers for
the same module for every target (boot/kernel/user) it appeared in. And
now that core headers are out of src/include, this was going to cause
problems for the new libc changes I've been working on. So I went back
to re-design how module headers work.
Pre-requisites:
- A module's public headers should all be available in one location, not
tied to target.
- No accidental includes. Another module should not be able to include
anything (creating an implicit dependency) from a module without
declaring an explicit dependency.
- Exception to the previous: libc's headers should be available to all,
at least for the freestanding headers.
New system:
- A new "public_headers" property of module declares all public headers
that should be available to dependant modules
- All public headers (after possible processing) are installed relative
to build/include/<module> with the same path as their source
- This also means no "include" dir in modules is necessary. If a header
should be included as <j6/types.h> then its source should be
src/libraries/j6/j6/types.h - this caused the most churn as all public
header sources moved one directory up.
- The "includes" property of a module is local only to that module now,
it does not create any implicit public interface
Other changes:
- The bonnibel concept of sources changed: instead of sources having
actions, they themselves are an instance of a (sub)class of Source,
which provides all the necessary information itself.
- Along with the above, rule names were standardized into <type>.<ext>,
eg "compile.cpp" or "parse.cog"
- cog and cogflags variables moved from per-target scope to global scope
in the build files.
- libc gained a more dynamic .module file
This is a rather large commit that is widely focused on cleaning things
out of the 'junk drawer' that is src/include. Most notably, several
things that were put in there because they needed somewhere where both
the kernel, boot, and init could read them have been moved to a new lib,
'bootproto'.
- Moved kernel_args.h and init_args.h to bootproto as kernel.h and
init.h, respectively.
- Moved counted.h and pointer_manipulation.h into util, renaming the
latter to util/pointers.h.
- Created a new src/include/arch for very arch-dependent definitions,
and moved some kernel_memory.h constants like frame size, page table
entry count, etc to arch/amd64/memory.h. Also created arch/memory.h
which detects platform and includes the former.
- Got rid of kernel_memory.h entirely in favor of a new, cog-based
approach. The new definitions/memory_layout.csv lists memory regions
in descending order from the top of memory, their sizes, and whether
they are shared outside the kernel (ie, boot needs to know them). The
new header bootproto/memory.h exposes the addresses of the shared
regions, while the kernel's memory.h gains the start and size of all
the regions. Also renamed the badly-named page-offset area the linear
area.
- The python build scripts got a few new features: the ability to parse
the csv mentioned above in a new memory.py module; the ability to add
dependencies to existing source files (The list of files that I had to
pull out of the main list just to add them with the dependency on
memory.h was getting too large. So I put them back into the sources
list, and added the dependency post-hoc.); and the ability to
reference 'source_root', 'build_root', and 'module_root' variables in
.module files.
- Some utility functions that were in the kernel's memory.h got moved to
util/pointers.h and util/misc.h, and misc.h's byteswap was renamed
byteswap32 to be more specific.