Added the handle_clone syscall which allows for cloning a handle with
a subset of the original handle's capabilities.
Related changes:
- srv.init now calls handle_clone on its system handle, and load_program
was changed to allow this second system handle to be passed to loaded
programs instead. However, as drv.uart is still a driver AND a log
reader, this new handle is not actually passed yet.
- The definition parser was using a set for the cap list, which meant
the order (and thus values) of caps was not static.
- Some code in objects/handle.h was made more explicit about what bits
meant what.
This change finally adds capabilities to handles. Included changes:
- j6_handle_t is now again 64 bits, with the highest 8 bits being a type
code, and the next highest 24 bits being the capability mask, so that
programs can check type/caps without calling the kernel.
- The definitions grammar now includes a `capabilities [ ]` section on
objects, to list what capabilities are relevant.
- j6/caps.h is auto-generated from object capability lists
- init_libj6 again sets __handle_self and __handle_sys, this is a bit
of a hack.
- A new syscall, j6_handle_list, will return the list of existing
handles owned by the calling process.
- syscall_verify.cpp.cog now actually checks that the needed
capabilities exist on handles before allowing the call.
First attempt at a UART driver. I'm not sure it's the most stable. Now
that userspace is handling displaying logs, also removed serial and log
output support from the kernel.
This is a rather large commit that is widely focused on cleaning things
out of the 'junk drawer' that is src/include. Most notably, several
things that were put in there because they needed somewhere where both
the kernel, boot, and init could read them have been moved to a new lib,
'bootproto'.
- Moved kernel_args.h and init_args.h to bootproto as kernel.h and
init.h, respectively.
- Moved counted.h and pointer_manipulation.h into util, renaming the
latter to util/pointers.h.
- Created a new src/include/arch for very arch-dependent definitions,
and moved some kernel_memory.h constants like frame size, page table
entry count, etc to arch/amd64/memory.h. Also created arch/memory.h
which detects platform and includes the former.
- Got rid of kernel_memory.h entirely in favor of a new, cog-based
approach. The new definitions/memory_layout.csv lists memory regions
in descending order from the top of memory, their sizes, and whether
they are shared outside the kernel (ie, boot needs to know them). The
new header bootproto/memory.h exposes the addresses of the shared
regions, while the kernel's memory.h gains the start and size of all
the regions. Also renamed the badly-named page-offset area the linear
area.
- The python build scripts got a few new features: the ability to parse
the csv mentioned above in a new memory.py module; the ability to add
dependencies to existing source files (The list of files that I had to
pull out of the main list just to add them with the dependency on
memory.h was getting too large. So I put them back into the sources
list, and added the dependency post-hoc.); and the ability to
reference 'source_root', 'build_root', and 'module_root' variables in
.module files.
- Some utility functions that were in the kernel's memory.h got moved to
util/pointers.h and util/misc.h, and misc.h's byteswap was renamed
byteswap32 to be more specific.
Now that kutil has no kernel-specific code in it anymore, it can
actually be linked to by anything, so I'm renaming it 'util'.
Also, I've tried to unify the way that the system libraries from
src/libraries are #included using <> instead of "".
Other small change: util::bip_buffer got a spinlock to guard against
state corruption.
Add a simple ELF loader to srv.init to load and start any module_program
parameters passed from the bootloader. Also creates stacks for newly
created threads.
Also update thread creation in testapp to create stacks.