The cpu::cpu_id class no longer looks up all known features in the
constructor, but instead provides access to the map of supported
features as a bitset from the verify() method. It also exposes the
brand_name() method instead of loading the brand name string in the
constructor and storing it as part of the object.
I'm a tabs guy. I like tabs, it's an elegant way to represent
indentation instead of brute-forcing it. But I have to admit that the
world seems to be going towards spaces, and tooling tends not to play
nice with tabs. So here we go, changing the whole repo to spaces since
I'm getting tired of all the inconsistent formatting.
Create a new usermode program, srv.init, and have it read the initial
module_page args sent to it by the bootloader. Doesn't yet do anything
useful but sets up the way for loading the rest of the programs from
srv.init.
Other (mostly) related changes:
- bootloader: The allocator now has a function for allocating init
modules out of a modules_page slab. Also changed how the allocator is
initialized and passes the allocation register and modules_page list
to efi_main().
- bootloader: Expose the simple wstrlen() to the rest of the program
- bootloader: Move check_cpu_supported() to hardware.cpp
- bootloader: Moved program_desc to loader.h and made the loader
functions take it as an argument instead of paths.
- kernel: Rename the system_map_mmio syscall to system_map_phys, and
stop having it default those VMAs to having the vm_flags::mmio flag.
Added a new flag mask, vm_flags::driver_mask, so that drivers can be
allowed to ask for the MMIO flag.
- kernel: Rename load_simple_process() to load_init_server() and got rid
of all the stack setup routines in memory_bootstrap.cpp and task.s
- Fixed formatting in config/debug.toml, undefined __linux and other
linux-specific defines, and got rid of _LIBCPP_HAS_THREAD_API_EXTERNAL
because that's just not true.
To enable setting sections as NX or read-only, the boot program loader
now loads programs as lists of sections, and the kernel args are updated
accordingly. The kernel's loader now just takes a program pointer to
iterate the sections. Also enable NX in IA32_EFER in the bootloader.
After exiting UEFI, the bootloader had no way of displaying status to
the user. Now it will display a series of small boxes as a progress bar
along the bottom of the screen if a framebuffer exists. Errors or
warnings during a step will cause that step's box to turn red or orange,
and display bars above it to signal the error code.
This caused the simplification of the error handling system (which was
mostly just calling status_line::fail) and added different types of
status objects.