Set up initial page tables for both the offset-mapped area and the
loaded kernel code and data.
* Got rid of the `loaded_elf` struct - the loader now runs after the
initial PML4 is created and maps the ELF sections itself.
* Copied in the `page_table` and `page_table_indices` from the kernel,
still need to clean this up and extract it into shared code.
* Added `page_table_cache` to the kernel args to pass along free pages
that can be used for initial page tables.
Tags: paging
* Non-blocksize-aligned regions could fail to be found. Have the
bootloader load them aligned.
* Consolidating used frame blocks in the bootstrap means these would
have been impossible to free as address space
* mark_permanent wasn't actually removing blocks from the free list
Removed the frame allocation logic from page_manager and replaced it
with using an instance of frame_allocator instead. This had several
major ripple effects:
- memory_initalize() had to change to support this new world
- Where to map used blocks is now passed as a flag, since blocks don't
track their virtual address anymore
- Instead of the complicated "find N contiguous pages that can be
mapped in with one page table", we now just have the bootloader give
us some (currently 64) pages to use both for tables and scratch
space.
- frame_allocator initialization was split into two steps to allow
mapping used blocks before std::move()ing them over