The isr_prelude (and its IRQ equivalent) had been pushing RIP and RBP in
order to create a fake stack frame. This was in an effor to make GDB
display tracebacks more reliably, but GDB has other reasons for being
finnicky about stack frames, so this was just wasted. This commit gets
rid of it to make looking at the stack clearer.
Created the framework for using different loadable panic handlers,
loaded by the bootloader. Initial panic handler is panic.serial, which
contains its own serial driver and stacktrace code.
Other related changes:
- Asserts are now based on the NMI handler - panic handlers get
installed as the NMI interrupt handler
- Changed symbol table generation: now use nm's own demangling and
sorting, and include symbol size in the table
- Move the linker script argument out of the kernel target, and into the
kernel's specific module, so that other programs (ie, panic handlers)
can use the kernel target as well
- Some asm changes to boot.s to help GDB see stack frames - but this
might not actually be all that useful
- Renamed user_rsp to just rsp in cpu_state - everything in there is
describing the 'user' state
By adding more debug information to the symbols and adding function
frame preludes to the isr handler assembly functions, GDB sees them as
valid locations for stack frames, and can display backtraces through
interrupts.
We started actually running up against the page boundary for kernel
stacks and thus double-faulting on page faults from kernel space. So I
finally added IST stacks. Note that we currently just
increment/decrement the IST entry by a page when we enter the handler to
avoid clobbering on re-entry, but this means:
* these handlers need to be able to operate with only a page of stack
* kernel stacks always have to be >1 pages
* the amount of nesting possible is tied to the kernel stack size.
These seem fine for now, but we should maybe find a way to use something
besides g_kernel_stacks to set up the IST stacks if/when this becomes an
issue.
Previously CPU statue was passed on the stack, but the compiler is
allowed to clobber values passed to it on the stack in the SysV x86 ABI.
So now leave the state on the stack but pass a pointer to it into the
ISR functions.
The syscall/sysret instructions don't swap stacks. This was bad but
passable until syscalls caused the scheduler to run, and scheduling a
task that paused due to interrupt.
Adding a new (hopefully temporary) syscall interrupt `int 0xee` to allow
me to test syscalls without stack issues before I tackle the
syscall/sysret issue.
Also implemented a basic `pause` syscall that causes the calling process
to become unready. Because nothing can wake a process yet, it never
returns.
Now any initrd file is treated like a program image and passed to the
loader to load as a process. Very rudimentary elf loading just allocates
pages, copies sections, and sets the ELF's entrypoint as the RIP to
iretq to.
The scheduler's create_process now sets up the stack to iretq into a
load_process function, which will load the process image into memory
from within the process' own virtual memory space. Currently this
loading is just copying the old 'taskA' function from kernel space.
* It looks like UEFI enables SSE, so we need to tell clang -mno-sse for
now to not use XMM* until we're ready to save them.
* SYSCALL is working from ring3 tasks, calling console printf!
Return to having the bootloader re-map the kernel into the higher
half before jumping into the kernel entrypoint, so we don't have
to juggle pointers inside the kernel.