[kernel] Change heap alloc for better alignment

Created a new util/node_map.h that implements a map that grows in-place.
Now this is used for tracking blocks' size orders, instead of a header
at the start of the memory block. This allows the whole buddy block to
be allocated, allowing for page-aligned (or greater) blocks to be
requested from the heap.
This commit is contained in:
Justin C. Miller
2022-10-02 17:27:21 -07:00
parent 11b61ab345
commit e90647d498
9 changed files with 518 additions and 144 deletions

View File

@@ -9,69 +9,43 @@
#include "heap_allocator.h"
#include "memory.h"
struct heap_allocator::mem_header
uint32_t & get_map_key(heap_allocator::block_info &info) { return info.offset; }
struct heap_allocator::free_header
{
mem_header(mem_header *prev, mem_header *next, uint8_t order) :
m_prev(prev), m_next(next)
{
set_order(order);
}
inline void set_order(uint8_t order) {
m_prev = reinterpret_cast<mem_header *>(
reinterpret_cast<uintptr_t>(prev()) | (order & 0x3f));
}
inline void set_used(bool used) {
m_next = reinterpret_cast<mem_header *>(
reinterpret_cast<uintptr_t>(next()) | (used ? 1 : 0));
}
inline void set_next(mem_header *next) {
bool u = used();
m_next = next;
set_used(u);
}
inline void set_prev(mem_header *prev) {
uint8_t s = order();
m_prev = prev;
set_order(s);
void clear(unsigned new_order) {
prev = next = nullptr;
order = new_order;
}
void remove() {
if (next()) next()->set_prev(prev());
if (prev()) prev()->set_next(next());
set_prev(nullptr);
set_next(nullptr);
if (next) next->prev = prev;
if (prev) prev->next = next;
prev = next = nullptr;
}
inline mem_header * next() { return util::mask_pointer(m_next, 0x3f); }
inline mem_header * prev() { return util::mask_pointer(m_prev, 0x3f); }
inline mem_header * buddy() const {
return reinterpret_cast<mem_header *>(
reinterpret_cast<uintptr_t>(this) ^ (1 << order()));
inline free_header * buddy() const {
return reinterpret_cast<free_header *>(
reinterpret_cast<uintptr_t>(this) ^ (1 << order));
}
inline bool eldest() const { return this < buddy(); }
inline uint8_t order() const { return reinterpret_cast<uintptr_t>(m_prev) & 0x3f; }
inline bool used() const { return reinterpret_cast<uintptr_t>(m_next) & 0x1; }
private:
mem_header *m_prev;
mem_header *m_next;
free_header *prev;
free_header *next;
unsigned order;
};
heap_allocator::heap_allocator() : m_start {0}, m_end {0} {}
heap_allocator::heap_allocator(uintptr_t start, size_t size) :
heap_allocator::heap_allocator(uintptr_t start, size_t size, uintptr_t heapmap) :
m_start {start},
m_end {start+size},
m_blocks {0},
m_allocated_size {0}
m_end {start},
m_maxsize {size},
m_allocated_size {0},
m_map (reinterpret_cast<block_info*>(heapmap), 512)
{
memset(m_free, 0, sizeof(m_free));
}
@@ -79,12 +53,10 @@ heap_allocator::heap_allocator(uintptr_t start, size_t size) :
void *
heap_allocator::allocate(size_t length)
{
size_t total = length + sizeof(mem_header);
if (length == 0)
return nullptr;
unsigned order = util::log2(total);
unsigned order = util::log2(length);
if (order < min_order)
order = min_order;
@@ -94,10 +66,16 @@ heap_allocator::allocate(size_t length)
util::scoped_lock lock {m_lock};
mem_header *header = pop_free(order);
header->set_used(true);
m_allocated_size += (1 << order);
return header + 1;
free_header *block = pop_free(order);
if (!block && !split_off(order, block)) {
return new_block(order);
}
m_map[map_key(block)].free = false;
return block;
}
void
@@ -111,70 +89,107 @@ heap_allocator::free(void *p)
util::scoped_lock lock {m_lock};
mem_header *header = reinterpret_cast<mem_header *>(p);
header -= 1; // p points after the header
header->set_used(false);
m_allocated_size -= (1 << header->order());
free_header *block = reinterpret_cast<free_header *>(p);
block_info *info = m_map.find(map_key(block));
kassert(info, "Attempt to free pointer not known to the heap");
if (!info) return;
while (header->order() != max_order) {
auto order = header->order();
m_allocated_size -= (1 << info->order);
mem_header *buddy = header->buddy();
if (buddy->used() || buddy->order() != order)
break;
if (get_free(order) == buddy)
get_free(order) = buddy->next();
buddy->remove();
header = header->eldest() ? header : buddy;
header->set_order(order + 1);
}
uint8_t order = header->order();
header->set_next(get_free(order));
get_free(order) = header;
if (header->next())
header->next()->set_prev(header);
block->clear(info->order);
block = merge_block(block);
register_free_block(block, block->order);
}
void
heap_allocator::ensure_block(unsigned order)
{
if (get_free(order) != nullptr)
return;
if (order == max_order) {
size_t bytes = (1 << max_order);
uintptr_t next = m_start + m_blocks * bytes;
if (next + bytes <= m_end) {
mem_header *nextp = reinterpret_cast<mem_header *>(next);
new (nextp) mem_header(nullptr, nullptr, order);
get_free(order) = nextp;
++m_blocks;
}
} else {
mem_header *orig = pop_free(order + 1);
if (orig) {
mem_header *next = util::offset_pointer(orig, 1 << order);
new (next) mem_header(orig, nullptr, order);
orig->set_next(next);
orig->set_order(order);
get_free(order) = orig;
}
}
}
heap_allocator::mem_header *
heap_allocator::free_header *
heap_allocator::pop_free(unsigned order)
{
ensure_block(order);
mem_header *block = get_free(order);
free_header *block = get_free(order);
if (block) {
get_free(order) = block->next();
get_free(order) = block->next;
block->remove();
}
return block;
}
heap_allocator::free_header *
heap_allocator::merge_block(free_header *block)
{
// The lock needs to be held while calling merge_block
unsigned order = block->order;
while (order < max_order) {
block_info *info = m_map.find(map_key(block->buddy()));
if (!info || !info->free || info->order != order)
break;
free_header *buddy = block->buddy();
if (get_free(order) == buddy)
get_free(order) = buddy->next;
buddy->remove();
block = block->eldest() ? block : buddy;
m_map.erase(map_key(block->buddy()));
block->order = m_map[map_key(block)].order = ++order;
}
return block;
}
void *
heap_allocator::new_block(unsigned order)
{
// The lock needs to be held while calling new_block
// Add the largest blocks possible until m_end is
// aligned to be a block of the requested order
unsigned current = address_order(m_end);
while (current < order) {
register_free_block(reinterpret_cast<free_header*>(m_end), current);
m_end += 1 << current;
current = address_order(m_end);
}
void *block = reinterpret_cast<void*>(m_end);
m_end += 1 << order;
m_map[map_key(block)].order = order;
return block;
}
void
heap_allocator::register_free_block(free_header *block, unsigned order)
{
// The lock needs to be held while calling register_free_block
block_info &info = m_map[map_key(block)];
info.free = true;
info.order = order;
block->clear(order);
block->next = get_free(order);
get_free(order) = block;
}
bool
heap_allocator::split_off(unsigned order, free_header *&block)
{
// The lock needs to be held while calling split_off
const unsigned next = order + 1;
if (next > max_order) {
block = nullptr;
return false;
}
block = pop_free(next);
if (!block && !split_off(next, block))
return false;
block->order = order;
free_header *buddy = block->buddy();
register_free_block(block->buddy(), order);
m_map[map_key(block)].order = order;
return true;
}