Implement free() to finish buddy allocator

This commit is contained in:
Justin C. Miller
2018-05-07 00:59:45 -07:00
parent 949c9c0b8c
commit abb347e1a8
5 changed files with 126 additions and 52 deletions

View File

@@ -7,10 +7,10 @@
- The objects get created, but GSI lookup only uses the one at index 0 - The objects get created, but GSI lookup only uses the one at index 0
- Slab allocator for kernel structures - Slab allocator for kernel structures
- mark kernel memory pages global - mark kernel memory pages global
- kernel allocator `free()`
- lock `memory_manager` and `page_manager` structures - lock `memory_manager` and `page_manager` structures
- Serial out based on circular/bip biffer and interrupts, not spinning on - Serial out based on circular/bip biffer and interrupts, not spinning on
`write_ready()` `write_ready()`
- Split out more code into kutil for testing
- Device Tree - Device Tree

View File

@@ -46,9 +46,9 @@ init_console(const popcorn_data *header)
cons->puts(GIT_VERSION " booting...\n"); cons->puts(GIT_VERSION " booting...\n");
log::init(cons); log::init(cons);
log::enable(logs::apic, log::level::debug); log::enable(logs::apic, log::level::info);
log::enable(logs::devices, log::level::debug); log::enable(logs::devices, log::level::info);
log::enable(logs::memory, log::level::info); log::enable(logs::memory, log::level::debug);
} }
void do_error_3() { int x = 1 / 0; } void do_error_3() { int x = 1 / 0; }
@@ -81,7 +81,6 @@ kernel_main(popcorn_data *header)
log::info(logs::boot, "CPU Family %x Model %x Stepping %x", log::info(logs::boot, "CPU Family %x Model %x Stepping %x",
cpu.family(), cpu.model(), cpu.stepping()); cpu.family(), cpu.model(), cpu.stepping());
// do_error_1(); // do_error_1();
// __asm__ __volatile__("int $15"); // __asm__ __volatile__("int $15");

View File

@@ -1,3 +1,4 @@
#include "kutil/enum_bitfields.h"
#include "kutil/memory.h" #include "kutil/memory.h"
#include "assert.h" #include "assert.h"
#include "log.h" #include "log.h"
@@ -6,18 +7,66 @@
memory_manager g_kernel_memory_manager; memory_manager g_kernel_memory_manager;
struct memory_manager::alloc_header struct memory_manager::mem_header
{ {
uint64_t size; mem_header(mem_header *prev, mem_header *next, uint8_t size) :
uint64_t reserved; m_prev(prev), m_next(next)
uint8_t data[0]; {
} __attribute__ ((packed)); set_size(size);
}
struct memory_manager::free_header inline void set_size(uint8_t size)
{ {
free_header *next; m_prev = reinterpret_cast<mem_header *>(
uint64_t size; reinterpret_cast<addr_t>(prev()) | (size & 0x3f));
} __attribute__ ((packed)); }
inline void set_used(bool used)
{
m_next = reinterpret_cast<mem_header *>(
reinterpret_cast<addr_t>(next()) | (used ? 1 : 0));
}
inline void set_next(mem_header *next)
{
bool u = used();
m_next = next;
set_used(u);
}
inline void set_prev(mem_header *prev)
{
uint8_t s = size();
m_prev = prev;
set_size(s);
}
void remove()
{
if (next()) next()->set_prev(prev());
if (prev()) prev()->set_next(next());
set_prev(nullptr);
set_next(nullptr);
}
inline mem_header * next() { return kutil::mask_pointer(m_next, 0x3f); }
inline mem_header * prev() { return kutil::mask_pointer(m_prev, 0x3f); }
inline mem_header * buddy() const {
return reinterpret_cast<mem_header *>(
reinterpret_cast<addr_t>(this) ^ (1 << size()));
}
inline bool eldest() const { return this < buddy(); }
inline uint8_t size() const { return reinterpret_cast<addr_t>(m_prev) & 0x3f; }
inline bool used() const { return reinterpret_cast<addr_t>(m_next) & 0x1; }
private:
mem_header *m_prev;
mem_header *m_next;
};
memory_manager::memory_manager() : memory_manager::memory_manager() :
m_start(nullptr), m_start(nullptr),
@@ -37,23 +86,43 @@ memory_manager::memory_manager(void *start) :
void * void *
memory_manager::allocate(size_t length) memory_manager::allocate(size_t length)
{ {
size_t total = length + sizeof(alloc_header); size_t total = length + sizeof(mem_header);
unsigned size = min_size; unsigned size = min_size;
while (total > (1 << size)) size++; while (total > (1 << size)) size++;
kassert(size < max_size, "Tried to allocate a block bigger than max_size"); kassert(size < max_size, "Tried to allocate a block bigger than max_size");
log::debug(logs::memory, "Allocating %d bytes, which is size %d", total, size); log::debug(logs::memory, "Allocating %d bytes, which is size %d", total, size);
alloc_header *header = reinterpret_cast<alloc_header *>(pop_free(size)); mem_header *header = pop_free(size);
header->size = size; header->set_used(true);
log::debug(logs::memory, " Returning %d bytes at %lx", length, &header->data); log::debug(logs::memory, " Returning %d bytes at %lx", length, header + 1);
return &header->data; return header + 1;
} }
void void
memory_manager::free(void *p) memory_manager::free(void *p)
{ {
// In this simple version, we don't care about freed pointers mem_header *header = reinterpret_cast<mem_header *>(p);
header -= 1; // p points after the header
header->set_used(false);
log::debug(logs::memory, "Freeing a block of size %2d at %lx", header->size(), header);
while (true) {
mem_header *buddy = header->buddy();
if (buddy->used() || buddy->size() != header->size()) break;
log::debug(logs::memory, " buddy is same size at %lx", buddy);
buddy->remove();
header = header->eldest() ? header : buddy;
header->set_size(header->size() + 1);
log::debug(logs::memory, " joined into size %2d at %lx", header->size(), header);
}
uint8_t size = header->size();
header->set_next(get_free(size));
get_free(size) = header;
if (header->next())
header->next()->set_prev(header);
} }
void void
@@ -61,57 +130,53 @@ memory_manager::grow_memory()
{ {
size_t length = (1 << max_size); size_t length = (1 << max_size);
free_header *block = reinterpret_cast<free_header *>( void *next = kutil::offset_pointer(m_start, m_length);
reinterpret_cast<uint64_t>(m_start) + m_length);
g_page_manager.map_pages( g_page_manager.map_pages(
reinterpret_cast<page_manager::addr_t>(block), reinterpret_cast<page_manager::addr_t>(next),
length / page_manager::page_size); length / page_manager::page_size);
block->size = max_size; mem_header *block = new (next) mem_header(nullptr, get_free(max_size), max_size);
block->next = get_free(max_size);
get_free(max_size) = block; get_free(max_size) = block;
if (block->next())
block->next()->set_prev(block);
m_length += length; m_length += length;
log::debug(logs::memory, "Allocated new block at %lx: size %d next %lx", log::debug(logs::memory, "Allocated new block at %lx: size %d next %lx",
block, block->size, block->next); block, max_size, block->next());
} }
void void
memory_manager::ensure_block(unsigned size) memory_manager::ensure_block(unsigned size)
{ {
free_header *header = get_free(size); if (get_free(size) != nullptr) return;
if (header != nullptr) return;
else if (size == max_size) { else if (size == max_size) {
grow_memory(); grow_memory();
return; return;
} }
free_header *bigger = pop_free(size + 1); mem_header *orig = pop_free(size + 1);
uint64_t new_size = bigger->size - 1; mem_header *next = kutil::offset_pointer(orig, 1 << size);
free_header *next = reinterpret_cast<free_header *>( new (next) mem_header(orig, nullptr, size);
reinterpret_cast<uint64_t>(bigger) + (1 << new_size));
next->next = bigger->next; orig->set_next(next);
next->size = new_size; orig->set_size(size);
get_free(size) = orig;
bigger->next = next;
bigger->size = new_size;
log::debug(logs::memory, "ensure_block[%2d] split blocks:", size); log::debug(logs::memory, "ensure_block[%2d] split blocks:", size);
log::debug(logs::memory, " %lx: size %d next %lx", bigger, bigger->size, bigger->next); log::debug(logs::memory, " %lx: size %d next %lx", orig, size, orig->next());
log::debug(logs::memory, " %lx: size %d next %lx", next, next->size, next->next); log::debug(logs::memory, " %lx: size %d next %lx", next, size, next->next());
get_free(size) = bigger;
} }
memory_manager::free_header * memory_manager::mem_header *
memory_manager::pop_free(unsigned size) memory_manager::pop_free(unsigned size)
{ {
ensure_block(size); ensure_block(size);
free_header *block = get_free(size); mem_header *block = get_free(size);
get_free(size) = block->next; get_free(size) = block->next();
block->next = nullptr;
block->remove();
return block; return block;
} }

View File

@@ -24,8 +24,7 @@ public:
void free(void *p); void free(void *p);
private: private:
struct alloc_header; class mem_header;
struct free_header;
/// Expand the size of memory /// Expand the size of memory
void grow_memory(); void grow_memory();
@@ -35,15 +34,18 @@ private:
void ensure_block(unsigned size); void ensure_block(unsigned size);
/// Helper accessor for the list of blocks of a given size /// Helper accessor for the list of blocks of a given size
free_header *& get_free(unsigned size) { return m_free[size - min_size]; } mem_header *& get_free(unsigned size) { return m_free[size - min_size]; }
/// Helper to get a block of the given size, growing if necessary /// Helper to get a block of the given size, growing if necessary
free_header * pop_free(unsigned size); mem_header * pop_free(unsigned size);
static const unsigned min_size = 6; ///< Minimum block size is (2^min_size) /// Minimum block size is (2^min_size). Must be at least 6.
static const unsigned max_size = 16; ///< Maximum block size is (2^max_size) static const unsigned min_size = 6;
free_header *m_free[max_size - min_size]; /// Maximum block size is (2^max_size). Must be less than 64.
static const unsigned max_size = 16;
mem_header *m_free[max_size - min_size];
void *m_start; void *m_start;
size_t m_length; size_t m_length;
@@ -65,3 +67,5 @@ inline void * kalloc(size_t length) { return g_kernel_memory_manager.allocate(le
/// Free kernel space memory. /// Free kernel space memory.
/// \arg p The pointer to free /// \arg p The pointer to free
inline void kfree(void *p) { g_kernel_memory_manager.free(p); } inline void kfree(void *p) { g_kernel_memory_manager.free(p); }
void * operator new (size_t, void *p);

View File

@@ -19,4 +19,10 @@ inline T * offset_pointer(T *p, size_t offset)
return reinterpret_cast<T *>(reinterpret_cast<addr_t>(p) + offset); return reinterpret_cast<T *>(reinterpret_cast<addr_t>(p) + offset);
} }
template <typename T>
inline T* mask_pointer(T *p, addr_t mask)
{
return reinterpret_cast<T *>(reinterpret_cast<addr_t>(p) & ~mask);
}
} // namespace kutil } // namespace kutil