Initialize page_manager.

Page manager now:
- Caches mapped pages and page_block structs
- Can unmap memory ranges
- Unmaps extra kernel memory during it's init
This commit is contained in:
Justin C. Miller
2018-04-22 02:48:45 -07:00
parent 07fd3abe2c
commit 95d52b87f4
5 changed files with 397 additions and 115 deletions

View File

@@ -5,4 +5,5 @@
- Better page-allocation model
- Reclaim skipped bootstrap scratch space
- Allow for more than one IOAPIC in ACPI module
- Move list functions to be standalone in case of null

View File

@@ -14,6 +14,8 @@ public:
private:
friend class page_manager;
};
extern memory_manager g_memory_manager;

View File

@@ -102,12 +102,6 @@ desc_incr(const efi_memory_descriptor *d, size_t desc_length)
reinterpret_cast<const uint8_t *>(d) + desc_length);
}
struct page_table
{
uint64_t entries[512];
page_table * next(int i) const { return reinterpret_cast<page_table *>(entries[i] & ~0xfffull); }
};
static unsigned
count_table_pages_needed(page_block *used)
{
@@ -145,7 +139,8 @@ count_table_pages_needed(page_block *used)
uint64_t
gather_block_lists(
uint64_t scratch,
uint64_t scratch_phys,
uint64_t scratch_virt,
const void *memory_map,
size_t map_length,
size_t desc_length,
@@ -156,7 +151,7 @@ gather_block_lists(
page_block **free = free_head;
page_block **used = used_head;
page_block *block_list = reinterpret_cast<page_block *>(scratch);
page_block *block_list = reinterpret_cast<page_block *>(scratch_virt);
efi_memory_descriptor const *desc = reinterpret_cast<efi_memory_descriptor const *>(memory_map);
efi_memory_descriptor const *end = desc_incr(desc, map_length);
@@ -176,10 +171,10 @@ gather_block_lists(
case efi_memory_type::boot_services_code:
case efi_memory_type::boot_services_data:
case efi_memory_type::available:
if (scratch >= block->physical_address && scratch < block->physical_end()) {
if (scratch_phys >= block->physical_address && scratch_phys < block->physical_end()) {
// This is the scratch memory block, split off what we're not using
block->virtual_address = block->physical_address + page_manager::high_offset;
block->flags = page_block_flags::used | page_block_flags::mapped;
block->flags = page_block_flags::used;
if (block->count > 1024) {
page_block *rest = &block_list[i++];
@@ -227,65 +222,21 @@ gather_block_lists(
return reinterpret_cast<uint64_t>(&block_list[i]);
}
unsigned check_needs_page(page_table *table, unsigned index, page_table **free_pages)
{
if (table->entries[index] & 0x1 == 1) return 0;
kassert(*free_pages, "check_needs_page needed to allocate but had no free pages");
page_table *new_table = (*free_pages)++;
for (int i=0; i<512; ++i) new_table->entries[i] = 0;
table->entries[index] = reinterpret_cast<uint64_t>(new_table) | 0xb;
return 1;
}
unsigned page_in(page_table *pml4, uint64_t phys_addr, uint64_t virt_addr, uint64_t count, page_table *free_pages)
{
page_table_indices idx{virt_addr};
page_table *tables[4] = {pml4, nullptr, nullptr, nullptr};
unsigned pages_consumed = 0;
for (; idx[0] < 512; idx[0] += 1) {
pages_consumed += check_needs_page(tables[0], idx[0], &free_pages);
tables[1] = reinterpret_cast<page_table *>(
tables[0]->entries[idx[0]] & ~0xfffull);
for (; idx[1] < 512; idx[1] += 1) {
pages_consumed += check_needs_page(tables[1], idx[1], &free_pages);
tables[2] = reinterpret_cast<page_table *>(
tables[1]->entries[idx[1]] & ~0xfffull);
for (; idx[2] < 512; idx[2] += 1) {
pages_consumed += check_needs_page(tables[2], idx[2], &free_pages);
tables[3] = reinterpret_cast<page_table *>(
tables[2]->entries[idx[2]] & ~0xfffull);
for (; idx[3] < 512; idx[3] += 1) {
tables[3]->entries[idx[3]] = phys_addr | 0xb;
phys_addr += page_manager::page_size;
if (--count == 0) return pages_consumed;
}
}
}
}
kassert(0, "Ran to end of page_in");
}
page_block *
fill_page_with_blocks(uint64_t start) {
uint64_t space = page_align(start) - start;
uint64_t count = space / sizeof(page_block);
uint64_t end = page_align(start);
page_block *blocks = reinterpret_cast<page_block *>(start);
kutil::memset(blocks, 0, sizeof(page_block)*count);
page_block *endp = reinterpret_cast<page_block *>(end - sizeof(page_block));
if (blocks >= endp)
return nullptr;
page_block *head = nullptr, **insert = &head;
for (unsigned i = 0; i < count; ++i) {
*insert = &blocks[i];
insert = &blocks[i].next;
page_block *cur = blocks;
while (cur < endp) {
cur->zero(cur + 1);
cur += 1;
}
return head;
cur->next = 0;
return blocks;
}
void
@@ -314,16 +265,14 @@ memory_initialize_managers(const void *memory_map, size_t map_length, size_t des
kassert(desc < end, "Couldn't find 4MiB of contiguous scratch space.");
// Offset-map this region into the higher half.
uint64_t free_region_start = desc->physical_start;
uint64_t free_region = page_table_align(free_region_start);
uint64_t next_free = free_region + page_manager::high_offset;
cons->puts("Skipping ");
cons->put_dec(free_region - free_region_start);
cons->puts(" bytes to get page-table-aligned.\n");
uint64_t free_start_phys = desc->physical_start;
uint64_t free_start = free_start_phys + page_manager::high_offset;
uint64_t free_aligned_phys = page_table_align(free_start_phys);
uint64_t free_next = free_aligned_phys + page_manager::high_offset;
// We'll need to copy any existing tables (except the PML4 which the
// bootloader gave us) into our 4 reserved pages so we can edit them.
page_table_indices fr_idx{free_region};
page_table_indices fr_idx{free_aligned_phys};
fr_idx[0] += 256; // Flip the highest bit of the address
if (tables[0].entries[fr_idx[0]] & 0x1) {
@@ -344,28 +293,31 @@ memory_initialize_managers(const void *memory_map, size_t map_length, size_t des
// No need to copy the last-level page table, we're overwriting the whole thing
tables[2].entries[fr_idx[2]] = reinterpret_cast<uint64_t>(&tables[3]) | 0xb;
page_in(&tables[0], free_region, next_free, 512, nullptr);
page_in(&tables[0], free_aligned_phys, free_next, 512, nullptr);
// We now have 2MiB starting at "free_region" to bootstrap ourselves. Start by
// We now have 2MiB starting at "free_aligned_phys" to bootstrap ourselves. Start by
// taking inventory of free pages.
page_block *free_head = nullptr;
page_block *used_head = nullptr;
next_free = gather_block_lists(next_free, memory_map, map_length, desc_length,
free_next = gather_block_lists(
free_aligned_phys, free_next,
memory_map, map_length, desc_length,
&free_head, &used_head);
// Unused page_block structs go here - finish out the current page with them
page_block *cache_head = fill_page_with_blocks(next_free);
next_free = page_align(next_free);
page_block *cache_head = fill_page_with_blocks(free_next);
free_next = page_align(free_next);
// Now go back through these lists and consolidate
page_block **cache = &cache_head;
*cache = free_head->list_consolidate();
while (*cache) cache = &(*cache)->next;
*cache = used_head->list_consolidate();
page_block *freed = free_head->list_consolidate();
cache_head->list_append(freed);
freed = used_head->list_consolidate();
cache_head->list_append(freed);
// Ok, now build an acutal set of kernel page tables that just contains
// what the kernel actually has mapped.
page_table *pages = reinterpret_cast<page_table *>(next_free);
page_table *pages = reinterpret_cast<page_table *>(free_next);
unsigned consumed_pages = 1; // We're about to make a PML4, start with 1:w
// Finally, remap the existing mappings, but making everything writable
@@ -378,11 +330,14 @@ memory_initialize_managers(const void *memory_map, size_t map_length, size_t des
consumed_pages += page_in(pml4, cur->physical_address, cur->virtual_address,
cur->count, pages + consumed_pages);
}
next_free += (consumed_pages * page_manager::page_size);
free_next += (consumed_pages * page_manager::page_size);
// Put our new PML4 into CR3 to start using it
__asm__ __volatile__ ( "mov %%cr3, %0" : "=r" (pml4) );
// We now have all used memory mapped ourselves. Let the page_manager take
// over from here.
g_page_manager.init(
free_head, used_head, cache_head,
free_region_start, 1024, next_free);
free_start, 1024, free_next);
}

View File

@@ -5,31 +5,77 @@
page_manager g_page_manager;
page_block *
page_block::list_consolidate()
struct free_page_header
{
page_block *freed_head = nullptr, **freed = &freed_head;
for (page_block *cur = this; cur; cur = cur->next) {
page_block *next = cur->next;
free_page_header *next;
size_t count;
};
if (next && cur->flags == next->flags &&
cur->physical_end() == next->physical_address)
{
cur->count += next->count;
cur->next = next->next;
next->next = 0;
*freed = next;
freed = &next->next;
continue;
}
}
return freed_head;
size_t
page_block::list_count()
{
size_t i = 0;
for (page_block *b = this; b; b = b->next) ++i;
return i;
}
void
page_block::list_dump(const char *name)
page_block::list_append(page_block *list)
{
page_block *cur = this;
while (cur->next) cur = cur->next;
cur->next = list;
}
page_block *
page_block::list_insert(page_block *block)
{
page_block *cur = this;
page_block **prev = nullptr;
while (cur->physical_address < block->physical_address) {
prev = &cur->next;
cur = cur->next;
}
block->next = cur;
if (prev) {
*prev = block;
return this;
}
return block;
}
page_block *
page_block::list_consolidate()
{
page_block *freed = nullptr;
page_block *cur = this;
while (cur) {
page_block *next = cur->next;
if (next &&
cur->flags == next->flags &&
cur->physical_end() == next->physical_address &&
(!cur->has_flag(page_block_flags::mapped) ||
cur->virtual_end() == next->virtual_address)) {
cur->count += next->count;
cur->next = next->next;
next->zero(freed);
freed = next;
continue;
}
cur = cur->next;
}
return freed;
}
void
page_block::list_dump(const char *name, bool show_unmapped)
{
console *cons = console::get();
cons->puts("Block list");
@@ -41,6 +87,10 @@ page_block::list_dump(const char *name)
int count = 0;
for (page_block *cur = this; cur; cur = cur->next) {
count += 1;
if (!(show_unmapped || cur->has_flag(page_block_flags::mapped)))
continue;
cons->puts(" ");
cons->put_hex(cur->physical_address);
cons->puts(" ");
@@ -53,7 +103,6 @@ page_block::list_dump(const char *name)
cons->put_dec(cur->count);
cons->puts("]\n");
count += 1;
}
cons->puts(" Total: ");
@@ -61,6 +110,26 @@ page_block::list_dump(const char *name)
cons->puts("\n");
}
void
page_block::zero(page_block *set_next)
{
physical_address = 0;
virtual_address = 0;
count = 0;
flags = page_block_flags::free;
next = set_next;
}
void
page_block::copy(page_block *other)
{
physical_address = other->physical_address;
virtual_address = other->virtual_address;
count = other->count;
flags = other->flags;
next = other->next;
}
page_manager::page_manager() :
m_free(nullptr),
@@ -77,7 +146,185 @@ page_manager::init(
page_block *used,
page_block *block_cache,
uint64_t scratch_start,
uint64_t scratch_length,
uint64_t scratch_pages,
uint64_t scratch_cur)
{
m_free = free;
m_used = used;
m_block_cache = block_cache;
kassert(scratch_cur == page_align(scratch_cur),
"Current scratch space pointer is not page-aligned.");
uint64_t scratch_end = scratch_start + page_size * scratch_pages;
uint64_t unused_pages = (scratch_end - scratch_cur) / page_size;
console *cons = console::get();
unmap_pages(scratch_cur, unused_pages);
consolidate_blocks();
uint64_t scratch_aligned_start = page_table_align(scratch_start);
if (scratch_aligned_start != scratch_start) {
free_page_header *header =
reinterpret_cast<free_page_header *>(scratch_start);
header->count = (scratch_aligned_start - scratch_start) / page_size;
header->next = m_page_cache;
m_page_cache = header;
}
}
void
page_manager::free_blocks(page_block *block)
{
if (!block) return;
page_block *cur = block;
while (cur) {
page_block *next = cur->next;
cur->zero(cur->next ? cur->next : m_block_cache);
cur = next;
}
m_block_cache = block;
}
page_block *
page_manager::get_block()
{
page_block *block = m_block_cache;
if (block) {
m_block_cache = block->next;
block->next = 0;
return block;
} else {
kassert(0, "NYI: page_manager::get_block() needed to allocate.");
}
}
void *
page_manager::map_pages(uint64_t address, unsigned count)
{
}
void
page_manager::unmap_pages(uint64_t address, unsigned count)
{
page_block **prev = &m_used;
page_block *cur = m_used;
while (cur && !cur->contains(address)) {
prev = &cur->next;
cur = cur->next;
}
kassert(cur, "Couldn't find existing mapped pages to unmap");
uint64_t leading = address - cur->virtual_address;
uint64_t trailing = cur->virtual_end() - (address + page_size*count);
if (leading) {
page_block *lead_block = get_block();
lead_block->copy(cur);
lead_block->next = cur;
lead_block->count = leading / page_size;
*prev = lead_block;
prev = &lead_block->next;
}
if (trailing) {
page_block *trail_block = get_block();
trail_block->copy(cur);
trail_block->next = cur->next;
trail_block->count = trailing / page_size;
cur->next = trail_block;
}
*prev = cur->next;
cur->next = nullptr;
cur->flags = cur->flags & ~(page_block_flags::used | page_block_flags::mapped);
m_free->list_insert(cur);
}
void
page_manager::consolidate_blocks()
{
m_block_cache->list_append(m_free->list_consolidate());
m_block_cache->list_append(m_used->list_consolidate());
}
static unsigned
check_needs_page(page_table *table, unsigned index, page_table **free_pages)
{
if (table->entries[index] & 0x1 == 1) return 0;
kassert(*free_pages, "check_needs_page needed to allocate but had no free pages");
page_table *new_table = (*free_pages)++;
for (int i=0; i<512; ++i) new_table->entries[i] = 0;
table->entries[index] = reinterpret_cast<uint64_t>(new_table) | 0xb;
return 1;
}
unsigned
page_in(page_table *pml4, uint64_t phys_addr, uint64_t virt_addr, uint64_t count, page_table *free_pages)
{
page_table_indices idx{virt_addr};
page_table *tables[4] = {pml4, nullptr, nullptr, nullptr};
unsigned pages_consumed = 0;
for (; idx[0] < 512; idx[0] += 1) {
pages_consumed += check_needs_page(tables[0], idx[0], &free_pages);
tables[1] = reinterpret_cast<page_table *>(
tables[0]->entries[idx[0]] & ~0xfffull);
for (; idx[1] < 512; idx[1] += 1, idx[2] = 0, idx[3] = 0) {
pages_consumed += check_needs_page(tables[1], idx[1], &free_pages);
tables[2] = reinterpret_cast<page_table *>(
tables[1]->entries[idx[1]] & ~0xfffull);
for (; idx[2] < 512; idx[2] += 1, idx[3] = 0) {
pages_consumed += check_needs_page(tables[2], idx[2], &free_pages);
tables[3] = reinterpret_cast<page_table *>(
tables[2]->entries[idx[2]] & ~0xfffull);
for (; idx[3] < 512; idx[3] += 1) {
tables[3]->entries[idx[3]] = phys_addr | 0xb;
phys_addr += page_manager::page_size;
if (--count == 0) return pages_consumed;
}
}
}
}
kassert(0, "Ran to end of page_in");
}
void
page_out(page_table *pml4, uint64_t virt_addr, uint64_t count)
{
page_table_indices idx{virt_addr};
page_table *tables[4] = {pml4, nullptr, nullptr, nullptr};
for (; idx[0] < 512; idx[0] += 1) {
tables[1] = reinterpret_cast<page_table *>(
tables[0]->entries[idx[0]] & ~0xfffull);
for (; idx[1] < 512; idx[1] += 1) {
tables[2] = reinterpret_cast<page_table *>(
tables[1]->entries[idx[1]] & ~0xfffull);
for (; idx[2] < 512; idx[2] += 1) {
tables[3] = reinterpret_cast<page_table *>(
tables[2]->entries[idx[2]] & ~0xfffull);
for (; idx[3] < 512; idx[3] += 1) {
tables[3]->entries[idx[3]] = 0;
if (--count == 0) return;
}
}
}
}
kassert(0, "Ran to end of page_out");
}

View File

@@ -2,24 +2,26 @@
/// \file memory_pages.h
/// The page memory manager and related definitions.
#include <stddef.h>
#include <stdint.h>
#include "kutil/enum_bitfields.h"
struct page_block;
struct free_page;
struct free_page_header;
/// Manager for allocation of physical pages.
class page_manager
{
public:
page_manager();
static const uint64_t page_size = 0x1000;
static const uint64_t high_offset = 0xffff800000000000;
page_manager(const page_manager &) = delete;
page_manager();
void * map_pages(uint64_t address, unsigned count);
void unmap_pages(uint64_t address, unsigned count);
private:
friend void memory_initialize_managers(const void *, size_t, size_t);
@@ -36,17 +38,30 @@ private:
/// Initialize the virtual memory manager based on this object's state
void init_memory_manager();
/// Create a `page_block` struct or pull one from the cache.
/// \returns An empty `page_block` struct
page_block * get_block();
/// Return a list of `page_block` structs to the cache.
/// \arg block A list of `page_block` structs
void free_blocks(page_block *block);
/// Consolidate the free and used block lists. Return freed blocks
/// to the cache.
void consolidate_blocks();
page_block *m_free; ///< Free pages list
page_block *m_used; ///< In-use pages list
page_block *m_block_cache; ///< Cache of unused page_block structs
free_page *m_page_cache; ///< Cache of free pages to use for tables
free_page_header *m_page_cache; ///< Cache of free pages to use for tables
page_manager(const page_manager &) = delete;
};
/// Global page manager.
extern page_manager g_page_manager;
/// Flags used by `page_block`.
enum class page_block_flags : uint32_t
{
@@ -75,9 +90,35 @@ struct page_block
page_block_flags flags;
page_block *next;
bool has_flag(page_block_flags f) const { return bitfield_contains(flags, f); }
uint64_t physical_end() const { return physical_address + (count * page_manager::page_size); }
uint64_t virtual_end() const { return virtual_address + (count * page_manager::page_size); }
inline bool has_flag(page_block_flags f) const { return bitfield_contains(flags, f); }
inline uint64_t physical_end() const { return physical_address + (count * page_manager::page_size); }
inline uint64_t virtual_end() const { return virtual_address + (count * page_manager::page_size); }
inline bool contains(uint64_t vaddr) const { return vaddr >= virtual_address && vaddr < virtual_end(); }
/// Helper to zero out a block and optionally set the next pointer.
/// \arg next [optional] The value for the `next` pointer
void zero(page_block *set_next = nullptr);
/// Helper to copy a bock from another block
/// \arg other The block to copy from
void copy(page_block *other);
/// \name Linked list functions
/// Functions to act on a `page_block *` as a linked list
/// @{
/// Count the items in this linked list.
/// \returns The number of entries in the list.
size_t list_count();
/// Append the gien block or list to this lit.
/// \arg list The list to append to the current list
void list_append(page_block *list);
/// Sorted-insert of a block into the list.
/// \arg block The single block to insert
/// \returns The new list head
page_block * list_insert(page_block *block);
/// Traverse the list, joining adjacent blocks where possible.
/// \returns A linked list of freed page_block structures.
@@ -85,7 +126,20 @@ struct page_block
/// Traverse the list, printing debug info on this list.
/// \arg name [optional] String to print as the name of this list
void list_dump(const char *name = nullptr);
/// \arg show_permanent [optional] If false, hide unmapped blocks
void list_dump(const char *name = nullptr, bool show_unmapped = false);
/// @}
};
/// Struct to allow easy accessing of a memory page being used as a page table.
struct page_table
{
uint64_t entries[512];
inline page_table * next(int i) const {
return reinterpret_cast<page_table *>(entries[i] & ~0xfffull);
}
};
@@ -119,3 +173,26 @@ template <typename T> inline T page_align(T p)
/// \arg p The address to align.
/// \returns The next page-table-aligned address _after_ `p`.
template <typename T> inline T page_table_align(T p) { return ((p - 1) & ~0x1fffffull) + 0x200000; }
/// Low-level routine for mapping a number of pages into the given page table.
/// \arg pml4 The root page table to map into
/// \arg phys_addr The starting physical address of the pages to be mapped
/// \arg virt_addr The starting virtual address ot the memory to be mapped
/// \arg count The number of pages to map
/// \arg free_pages A pointer to a list of free, mapped pages to use for new page tables.
/// \returns The number of pages consumed from `free_pages`.
unsigned page_in(
page_table *pml4,
uint64_t phys_addr,
uint64_t virt_addr,
uint64_t count,
page_table *free_pages);
/// Low-level routine for unmapping a number of pages from the given page table.
/// \arg pml4 The root page table for this mapping
/// \arg virt_addr The starting virtual address ot the memory to be unmapped
/// \arg count The number of pages to unmap
void page_out(
page_table *pml4,
uint64_t virt_addr,
uint64_t count);