[project] Lose the battle between tabs & spaces

I'm a tabs guy. I like tabs, it's an elegant way to represent
indentation instead of brute-forcing it. But I have to admit that the
world seems to be going towards spaces, and tooling tends not to play
nice with tabs. So here we go, changing the whole repo to spaces since
I'm getting tired of all the inconsistent formatting.
This commit is contained in:
F in Chat for Tabs
2021-08-01 17:46:16 -07:00
committed by Justin C. Miller
parent d36b2d8057
commit 8f529046a9
161 changed files with 7958 additions and 7958 deletions

View File

@@ -8,172 +8,172 @@ namespace kutil {
struct heap_allocator::mem_header
{
mem_header(mem_header *prev, mem_header *next, uint8_t order) :
m_prev(prev), m_next(next)
{
set_order(order);
}
mem_header(mem_header *prev, mem_header *next, uint8_t order) :
m_prev(prev), m_next(next)
{
set_order(order);
}
inline void set_order(uint8_t order) {
m_prev = reinterpret_cast<mem_header *>(
reinterpret_cast<uintptr_t>(prev()) | (order & 0x3f));
}
inline void set_order(uint8_t order) {
m_prev = reinterpret_cast<mem_header *>(
reinterpret_cast<uintptr_t>(prev()) | (order & 0x3f));
}
inline void set_used(bool used) {
m_next = reinterpret_cast<mem_header *>(
reinterpret_cast<uintptr_t>(next()) | (used ? 1 : 0));
}
inline void set_used(bool used) {
m_next = reinterpret_cast<mem_header *>(
reinterpret_cast<uintptr_t>(next()) | (used ? 1 : 0));
}
inline void set_next(mem_header *next) {
bool u = used();
m_next = next;
set_used(u);
}
inline void set_next(mem_header *next) {
bool u = used();
m_next = next;
set_used(u);
}
inline void set_prev(mem_header *prev) {
uint8_t s = order();
m_prev = prev;
set_order(s);
}
inline void set_prev(mem_header *prev) {
uint8_t s = order();
m_prev = prev;
set_order(s);
}
void remove() {
if (next()) next()->set_prev(prev());
if (prev()) prev()->set_next(next());
set_prev(nullptr);
set_next(nullptr);
}
void remove() {
if (next()) next()->set_prev(prev());
if (prev()) prev()->set_next(next());
set_prev(nullptr);
set_next(nullptr);
}
inline mem_header * next() { return kutil::mask_pointer(m_next, 0x3f); }
inline mem_header * prev() { return kutil::mask_pointer(m_prev, 0x3f); }
inline mem_header * next() { return kutil::mask_pointer(m_next, 0x3f); }
inline mem_header * prev() { return kutil::mask_pointer(m_prev, 0x3f); }
inline mem_header * buddy() const {
return reinterpret_cast<mem_header *>(
reinterpret_cast<uintptr_t>(this) ^ (1 << order()));
}
inline mem_header * buddy() const {
return reinterpret_cast<mem_header *>(
reinterpret_cast<uintptr_t>(this) ^ (1 << order()));
}
inline bool eldest() const { return this < buddy(); }
inline bool eldest() const { return this < buddy(); }
inline uint8_t order() const { return reinterpret_cast<uintptr_t>(m_prev) & 0x3f; }
inline bool used() const { return reinterpret_cast<uintptr_t>(m_next) & 0x1; }
inline uint8_t order() const { return reinterpret_cast<uintptr_t>(m_prev) & 0x3f; }
inline bool used() const { return reinterpret_cast<uintptr_t>(m_next) & 0x1; }
private:
mem_header *m_prev;
mem_header *m_next;
mem_header *m_prev;
mem_header *m_next;
};
heap_allocator::heap_allocator() : m_start {0}, m_end {0} {}
heap_allocator::heap_allocator(uintptr_t start, size_t size) :
m_start {start},
m_end {start+size},
m_blocks {0},
m_allocated_size {0}
m_start {start},
m_end {start+size},
m_blocks {0},
m_allocated_size {0}
{
kutil::memset(m_free, 0, sizeof(m_free));
kutil::memset(m_free, 0, sizeof(m_free));
}
void *
heap_allocator::allocate(size_t length)
{
size_t total = length + sizeof(mem_header);
size_t total = length + sizeof(mem_header);
if (length == 0)
return nullptr;
if (length == 0)
return nullptr;
unsigned order = log2(total);
if (order < min_order)
order = min_order;
unsigned order = log2(total);
if (order < min_order)
order = min_order;
kassert(order <= max_order, "Tried to allocate a block bigger than max_order");
if (order > max_order)
return nullptr;
kassert(order <= max_order, "Tried to allocate a block bigger than max_order");
if (order > max_order)
return nullptr;
scoped_lock lock {m_lock};
scoped_lock lock {m_lock};
mem_header *header = pop_free(order);
header->set_used(true);
m_allocated_size += (1 << order);
return header + 1;
mem_header *header = pop_free(order);
header->set_used(true);
m_allocated_size += (1 << order);
return header + 1;
}
void
heap_allocator::free(void *p)
{
if (!p) return;
if (!p) return;
uintptr_t addr = reinterpret_cast<uintptr_t>(p);
kassert(addr >= m_start && addr < m_end,
"Attempt to free non-heap pointer");
uintptr_t addr = reinterpret_cast<uintptr_t>(p);
kassert(addr >= m_start && addr < m_end,
"Attempt to free non-heap pointer");
scoped_lock lock {m_lock};
scoped_lock lock {m_lock};
mem_header *header = reinterpret_cast<mem_header *>(p);
header -= 1; // p points after the header
header->set_used(false);
m_allocated_size -= (1 << header->order());
mem_header *header = reinterpret_cast<mem_header *>(p);
header -= 1; // p points after the header
header->set_used(false);
m_allocated_size -= (1 << header->order());
while (header->order() != max_order) {
auto order = header->order();
while (header->order() != max_order) {
auto order = header->order();
mem_header *buddy = header->buddy();
if (buddy->used() || buddy->order() != order)
break;
mem_header *buddy = header->buddy();
if (buddy->used() || buddy->order() != order)
break;
if (get_free(order) == buddy)
get_free(order) = buddy->next();
if (get_free(order) == buddy)
get_free(order) = buddy->next();
buddy->remove();
buddy->remove();
header = header->eldest() ? header : buddy;
header->set_order(order + 1);
}
header = header->eldest() ? header : buddy;
header->set_order(order + 1);
}
uint8_t order = header->order();
header->set_next(get_free(order));
get_free(order) = header;
if (header->next())
header->next()->set_prev(header);
uint8_t order = header->order();
header->set_next(get_free(order));
get_free(order) = header;
if (header->next())
header->next()->set_prev(header);
}
void
heap_allocator::ensure_block(unsigned order)
{
if (get_free(order) != nullptr)
return;
if (get_free(order) != nullptr)
return;
if (order == max_order) {
size_t bytes = (1 << max_order);
uintptr_t next = m_start + m_blocks * bytes;
if (next + bytes <= m_end) {
mem_header *nextp = reinterpret_cast<mem_header *>(next);
new (nextp) mem_header(nullptr, nullptr, order);
get_free(order) = nextp;
++m_blocks;
}
} else {
mem_header *orig = pop_free(order + 1);
if (orig) {
mem_header *next = kutil::offset_pointer(orig, 1 << order);
new (next) mem_header(orig, nullptr, order);
if (order == max_order) {
size_t bytes = (1 << max_order);
uintptr_t next = m_start + m_blocks * bytes;
if (next + bytes <= m_end) {
mem_header *nextp = reinterpret_cast<mem_header *>(next);
new (nextp) mem_header(nullptr, nullptr, order);
get_free(order) = nextp;
++m_blocks;
}
} else {
mem_header *orig = pop_free(order + 1);
if (orig) {
mem_header *next = kutil::offset_pointer(orig, 1 << order);
new (next) mem_header(orig, nullptr, order);
orig->set_next(next);
orig->set_order(order);
get_free(order) = orig;
}
}
orig->set_next(next);
orig->set_order(order);
get_free(order) = orig;
}
}
}
heap_allocator::mem_header *
heap_allocator::pop_free(unsigned order)
{
ensure_block(order);
mem_header *block = get_free(order);
if (block) {
get_free(order) = block->next();
block->remove();
}
return block;
ensure_block(order);
mem_header *block = get_free(order);
if (block) {
get_free(order) = block->next();
block->remove();
}
return block;
}
} // namespace kutil