[project] Lose the battle between tabs & spaces

I'm a tabs guy. I like tabs, it's an elegant way to represent
indentation instead of brute-forcing it. But I have to admit that the
world seems to be going towards spaces, and tooling tends not to play
nice with tabs. So here we go, changing the whole repo to spaces since
I'm getting tired of all the inconsistent formatting.
This commit is contained in:
F in Chat for Tabs
2021-08-01 17:46:16 -07:00
committed by Justin C. Miller
parent d36b2d8057
commit 8f529046a9
161 changed files with 7958 additions and 7958 deletions

View File

@@ -24,139 +24,139 @@ static_assert(sizeof(allocation_register) == page_size);
void
allocator::init(
allocation_register *&allocs,
modules_page *&modules,
uefi::boot_services *bs)
allocation_register *&allocs,
modules_page *&modules,
uefi::boot_services *bs)
{
new (&g_alloc) allocator(*bs);
allocs = g_alloc.m_register;
modules = g_alloc.m_modules;
new (&g_alloc) allocator(*bs);
allocs = g_alloc.m_register;
modules = g_alloc.m_modules;
}
allocator::allocator(uefi::boot_services &bs) :
m_bs(bs),
m_register(nullptr),
m_modules(nullptr)
m_bs(bs),
m_register(nullptr),
m_modules(nullptr)
{
add_register();
add_modules();
add_register();
add_modules();
}
void
allocator::add_register()
{
allocation_register *reg = nullptr;
allocation_register *reg = nullptr;
try_or_raise(
m_bs.allocate_pages(uefi::allocate_type::any_pages,
uefi::memory_type::loader_data, 1, reinterpret_cast<void**>(&reg)),
L"Failed allocating allocation register page");
try_or_raise(
m_bs.allocate_pages(uefi::allocate_type::any_pages,
uefi::memory_type::loader_data, 1, reinterpret_cast<void**>(&reg)),
L"Failed allocating allocation register page");
m_bs.set_mem(reg, sizeof(allocation_register), 0);
m_bs.set_mem(reg, sizeof(allocation_register), 0);
if (m_register)
m_register->next = reg;
if (m_register)
m_register->next = reg;
m_register = reg;
return;
m_register = reg;
return;
}
void
allocator::add_modules()
{
modules_page *mods = reinterpret_cast<modules_page*>(
allocate_pages(1, alloc_type::init_args, true));
modules_page *mods = reinterpret_cast<modules_page*>(
allocate_pages(1, alloc_type::init_args, true));
if (m_modules)
m_modules->next = reinterpret_cast<uintptr_t>(mods);
if (m_modules)
m_modules->next = reinterpret_cast<uintptr_t>(mods);
mods->modules = reinterpret_cast<module*>(mods + 1);
m_modules = mods;
m_next_mod = mods->modules;
return;
mods->modules = reinterpret_cast<module*>(mods + 1);
m_modules = mods;
m_next_mod = mods->modules;
return;
}
void *
allocator::allocate_pages(size_t count, alloc_type type, bool zero)
{
if (count & ~0xffffffffull) {
error::raise(uefi::status::unsupported,
L"Cannot allocate more than 16TiB in pages at once.",
__LINE__);
}
if (count & ~0xffffffffull) {
error::raise(uefi::status::unsupported,
L"Cannot allocate more than 16TiB in pages at once.",
__LINE__);
}
if (!m_register || m_register->count == 0xff)
add_register();
if (!m_register || m_register->count == 0xff)
add_register();
void *pages = nullptr;
void *pages = nullptr;
try_or_raise(
m_bs.allocate_pages(uefi::allocate_type::any_pages,
uefi::memory_type::loader_data, count, &pages),
L"Failed allocating usable pages");
try_or_raise(
m_bs.allocate_pages(uefi::allocate_type::any_pages,
uefi::memory_type::loader_data, count, &pages),
L"Failed allocating usable pages");
page_allocation &ent = m_register->entries[m_register->count++];
ent.address = reinterpret_cast<uintptr_t>(pages);
ent.count = count;
ent.type = type;
page_allocation &ent = m_register->entries[m_register->count++];
ent.address = reinterpret_cast<uintptr_t>(pages);
ent.count = count;
ent.type = type;
if (zero)
m_bs.set_mem(pages, count * page_size, 0);
if (zero)
m_bs.set_mem(pages, count * page_size, 0);
return pages;
return pages;
}
module *
allocator::allocate_module_untyped(size_t size)
{
size_t remaining =
reinterpret_cast<uintptr_t>(m_modules) + page_size
- reinterpret_cast<uintptr_t>(m_next_mod);
size_t remaining =
reinterpret_cast<uintptr_t>(m_modules) + page_size
- reinterpret_cast<uintptr_t>(m_next_mod);
if (size > remaining)
add_modules();
if (size > remaining)
add_modules();
++m_modules->count;
module *m = m_next_mod;
m_next_mod = offset_ptr<module>(m_next_mod, size);
++m_modules->count;
module *m = m_next_mod;
m_next_mod = offset_ptr<module>(m_next_mod, size);
m->mod_length = size;
return m;
m->mod_length = size;
return m;
}
void *
allocator::allocate(size_t size, bool zero)
{
void *p = nullptr;
try_or_raise(
m_bs.allocate_pool(uefi::memory_type::loader_data, size, &p),
L"Could not allocate pool memory");
void *p = nullptr;
try_or_raise(
m_bs.allocate_pool(uefi::memory_type::loader_data, size, &p),
L"Could not allocate pool memory");
if (zero)
m_bs.set_mem(p, size, 0);
if (zero)
m_bs.set_mem(p, size, 0);
return p;
return p;
}
void
allocator::free(void *p)
{
try_or_raise(
m_bs.free_pool(p),
L"Freeing pool memory");
try_or_raise(
m_bs.free_pool(p),
L"Freeing pool memory");
}
void
allocator::memset(void *start, size_t size, uint8_t value)
{
m_bs.set_mem(start, size, value);
m_bs.set_mem(start, size, value);
}
void
allocator::copy(void *to, void *from, size_t size)
{
m_bs.copy_mem(to, from, size);
m_bs.copy_mem(to, from, size);
}
} // namespace memory