Move page table allocation to top 256GiB.

I forgot to account for tracking page table physical addresses, so
this is a bit of an overhaul. Major changes:
- Refactor bootstrap code into more functions and:
  - Only allocate 32 pages of scratch space
  - Remap remaining space into top 256GiB, the "page table space"
- Use the page table space to directly offset-map page table pages
  from their physical addresses, to avoid tracking overhead.
- Refactor page_block list functions into static functions to better
  handle null/empty lists
This commit is contained in:
Justin C. Miller
2018-04-22 21:52:59 -07:00
parent 571cc5a1da
commit 1de73de2e3
4 changed files with 364 additions and 153 deletions

View File

@@ -66,10 +66,11 @@ memory_init_pointer_fixup(EFI_BOOT_SERVICES *bootsvc, EFI_RUNTIME_SERVICES *runs
CHECK_EFI_STATUS_OR_RETURN(status, "Failed to initialize pointer update event."); CHECK_EFI_STATUS_OR_RETURN(status, "Failed to initialize pointer update event.");
// Reserve a page for our replacement PML4 // Reserve a page for our replacement PML4, plus some pages for the kernel to use
// as page tables while it gets started.
EFI_PHYSICAL_ADDRESS addr = 0; EFI_PHYSICAL_ADDRESS addr = 0;
status = bootsvc->AllocatePages(AllocateAnyPages, EfiLoaderData, 4, &addr); status = bootsvc->AllocatePages(AllocateAnyPages, EfiLoaderData, 16, &addr);
CHECK_EFI_STATUS_OR_RETURN(status, "Failed to allocate PML4 page."); CHECK_EFI_STATUS_OR_RETURN(status, "Failed to allocate page table pages.");
new_pml4 = (uint64_t *)addr; new_pml4 = (uint64_t *)addr;
} }

View File

@@ -4,6 +4,8 @@
#include "memory.h" #include "memory.h"
#include "memory_pages.h" #include "memory_pages.h"
const unsigned efi_page_size = 0x1000;
enum class efi_memory_type : uint32_t enum class efi_memory_type : uint32_t
{ {
reserved, reserved,
@@ -137,9 +139,75 @@ count_table_pages_needed(page_block *used)
} }
page_block *
remove_block_for(page_block **list, uint64_t phys_start, uint64_t pages, page_block **cache)
{
// This is basically just the removal portion of page_manager::unmap_pages,
// but with physical addresses, and only ever removing a single block.
page_block *prev = nullptr;
page_block *cur = *list;
while (cur && !cur->contains_physical(phys_start)) {
prev = cur;
cur = cur->next;
}
kassert(cur, "Couldn't find block to remove");
uint64_t size = page_manager::page_size * pages;
uint64_t end = phys_start + size;
uint64_t leading = phys_start - cur->physical_address;
uint64_t trailing = cur->physical_end() - end;
if (leading) {
uint64_t pages = leading / page_manager::page_size;
page_block *lead_block = *cache;
*cache = (*cache)->next;
lead_block->copy(cur);
lead_block->next = cur;
lead_block->count = pages;
cur->count -= pages;
cur->physical_address += leading;
if (cur->virtual_address)
cur->virtual_address += leading;
if (prev) {
prev->next = lead_block;
} else {
prev = lead_block;
*list = prev;
}
}
if (trailing) {
uint64_t pages = trailing / page_manager::page_size;
page_block *trail_block = *cache;
*cache = (*cache)->next;
trail_block->copy(cur);
trail_block->next = cur->next;
trail_block->count = pages;
trail_block->physical_address += size;
if (cur->virtual_address)
trail_block->virtual_address += size;
cur->count -= pages;
cur->next = trail_block;
}
prev->next = cur->next;
cur->next = nullptr;
return cur;
}
uint64_t uint64_t
gather_block_lists( gather_block_lists(
uint64_t scratch_phys,
uint64_t scratch_virt, uint64_t scratch_virt,
const void *memory_map, const void *memory_map,
size_t map_length, size_t map_length,
@@ -148,8 +216,8 @@ gather_block_lists(
page_block **used_head) page_block **used_head)
{ {
int i = 0; int i = 0;
page_block **free = free_head; page_block *free = nullptr;
page_block **used = used_head; page_block *used = nullptr;
page_block *block_list = reinterpret_cast<page_block *>(scratch_virt); page_block *block_list = reinterpret_cast<page_block *>(scratch_virt);
efi_memory_descriptor const *desc = reinterpret_cast<efi_memory_descriptor const *>(memory_map); efi_memory_descriptor const *desc = reinterpret_cast<efi_memory_descriptor const *>(memory_map);
@@ -171,26 +239,7 @@ gather_block_lists(
case efi_memory_type::boot_services_code: case efi_memory_type::boot_services_code:
case efi_memory_type::boot_services_data: case efi_memory_type::boot_services_data:
case efi_memory_type::available: case efi_memory_type::available:
if (scratch_phys >= block->physical_address && scratch_phys < block->physical_end()) { block->flags = page_block_flags::free;
// This is the scratch memory block, split off what we're not using
block->virtual_address = block->physical_address + page_manager::high_offset;
block->flags = page_block_flags::used;
if (block->count > 1024) {
page_block *rest = &block_list[i++];
rest->physical_address = desc->physical_start + (1024*page_manager::page_size);
rest->virtual_address = 0;
rest->flags = page_block_flags::free;
rest->count = desc->pages - 1024;
rest->next = nullptr;
*free = rest;
free = &rest->next;
block->count = 1024;
}
} else {
block->flags = page_block_flags::free;
}
break; break;
case efi_memory_type::acpi_reclaim: case efi_memory_type::acpi_reclaim:
@@ -207,101 +256,133 @@ gather_block_lists(
} }
if (block->has_flag(page_block_flags::used)) { if (block->has_flag(page_block_flags::used)) {
if (block->virtual_address != 0) if (block->virtual_address == block->physical_address)
block->flags |= page_block_flags::mapped; block->flags |= page_block_flags::mapped;
*used = block;
used = &block->next; used = page_block::insert_virtual(used, block);
} else { } else {
*free = block; free = page_block::insert_physical(free, block);
free = &block->next;
} }
desc = desc_incr(desc, desc_length); desc = desc_incr(desc, desc_length);
} }
*free_head = free;
*used_head = used;
return reinterpret_cast<uint64_t>(&block_list[i]); return reinterpret_cast<uint64_t>(&block_list[i]);
} }
page_block * page_block *
fill_page_with_blocks(uint64_t start) { fill_page_with_blocks(uint64_t start) {
uint64_t end = page_align(start); uint64_t end = page_align(start);
page_block *blocks = reinterpret_cast<page_block *>(start); uint64_t count = (end - start) / sizeof(page_block);
page_block *endp = reinterpret_cast<page_block *>(end - sizeof(page_block)); if (count == 0) return nullptr;
if (blocks >= endp)
return nullptr;
page_block *cur = blocks; page_block *blocks = reinterpret_cast<page_block *>(start);
while (cur < endp) { for (unsigned i = 0; i < count; ++i)
cur->zero(cur + 1); blocks[i].zero(&blocks[i+1]);
cur += 1; blocks[count - 1].next = nullptr;
}
cur->next = 0;
return blocks; return blocks;
} }
void
copy_new_table(page_table *base, unsigned index, page_table *new_table)
{
uint64_t entry = base->entries[index];
// If this is a large page and not a a table, bail out.
if(entry & 0x80) return;
if (entry & 0x1) {
page_table *old_next = base->next(index);
for (int i = 0; i < 512; ++i) new_table->entries[i] = old_next->entries[i];
} else {
for (int i = 0; i < 512; ++i) new_table->entries[i] = 0;
}
base->entries[index] = reinterpret_cast<uint64_t>(new_table) | 0xb;
}
static uint64_t
find_efi_free_aligned_pages(const void *memory_map, size_t map_length, size_t desc_length, unsigned pages)
{
efi_memory_descriptor const *desc =
reinterpret_cast<efi_memory_descriptor const *>(memory_map);
efi_memory_descriptor const *end = desc_incr(desc, map_length);
const unsigned want_space = pages * page_manager::page_size;
uint64_t start_phys = 0;
for (; desc < end; desc = desc_incr(desc, desc_length)) {
if (desc->type != efi_memory_type::available)
continue;
// See if the first wanted pages fit in one page table. If we
// find free memory at zero, skip ahead because we're not ready
// to deal with 0 being a valid pointer yet.
start_phys = desc->physical_start;
if (start_phys == 0)
start_phys += efi_page_size;
const uint64_t desc_end =
desc->physical_start + desc->pages * efi_page_size;
uint64_t end = start_phys + want_space;
if (end < desc_end) {
page_table_indices start_idx{start_phys};
page_table_indices end_idx{end};
if (start_idx[0] == end_idx[0] &&
start_idx[1] == end_idx[1] &&
start_idx[2] == end_idx[2])
break;
// Try seeing if the page-table-aligned version fits
start_phys = page_table_align(start_phys);
end = start_phys + want_space;
if (end < desc_end)
break;
}
}
kassert(desc < end, "Couldn't find wanted pages of aligned scratch space.");
return start_phys;
}
void void
memory_initialize_managers(const void *memory_map, size_t map_length, size_t desc_length) memory_initialize_managers(const void *memory_map, size_t map_length, size_t desc_length)
{ {
console *cons = console::get(); console *cons = console::get();
// The bootloader reserved 4 pages for page tables, which we'll use to bootstrap. // The bootloader reserved 16 pages for page tables, which we'll use to bootstrap.
// The first one is the already-installed PML4, so grab it from CR3. // The first one is the already-installed PML4, so grab it from CR3.
page_table *tables = nullptr; page_table *tables = page_manager::get_pml4();
__asm__ __volatile__ ( "mov %%cr3, %0" : "=r" (tables) );
// Now go through EFi's memory map and find a 4MiB region of free space to // Now go through EFi's memory map and find a region of scratch space.
// use as a scratch space. We'll use the 2MiB that fits naturally aligned const unsigned want_pages = 32;
// into a single page table. uint64_t free_region_start_phys =
efi_memory_descriptor const *desc = find_efi_free_aligned_pages(memory_map, map_length, desc_length, want_pages);
reinterpret_cast<efi_memory_descriptor const *>(memory_map);
efi_memory_descriptor const *end = desc_incr(desc, map_length);
while (desc < end) {
if (desc->type == efi_memory_type::available && desc->pages >= 1024)
break;
desc = desc_incr(desc, desc_length);
}
kassert(desc < end, "Couldn't find 4MiB of contiguous scratch space.");
// Offset-map this region into the higher half. // Offset-map this region into the higher half.
uint64_t free_start_phys = desc->physical_start; uint64_t free_region_start_virt =
uint64_t free_start = free_start_phys + page_manager::high_offset; free_region_start_phys + page_manager::high_offset;
uint64_t free_aligned_phys = page_table_align(free_start_phys);
uint64_t free_next = free_aligned_phys + page_manager::high_offset; uint64_t free_next = free_region_start_virt;
// We'll need to copy any existing tables (except the PML4 which the // We'll need to copy any existing tables (except the PML4 which the
// bootloader gave us) into our 4 reserved pages so we can edit them. // bootloader gave us) into our 4 reserved pages so we can edit them.
page_table_indices fr_idx{free_aligned_phys}; page_table_indices fr_idx{free_region_start_virt};
fr_idx[0] += 256; // Flip the highest bit of the address
if (tables[0].entries[fr_idx[0]] & 0x1) { copy_new_table(&tables[0], fr_idx[0], &tables[1]);
page_table *old_pdpt = tables[0].next(fr_idx[0]); copy_new_table(&tables[1], fr_idx[1], &tables[2]);
for (int i = 0; i < 512; ++i) tables[1].entries[i] = old_pdpt->entries[i]; copy_new_table(&tables[2], fr_idx[2], &tables[3]);
} else { page_in(&tables[0], free_region_start_phys, free_region_start_virt, want_pages, nullptr);
for (int i = 0; i < 512; ++i) tables[1].entries[i] = 0;
}
tables[0].entries[fr_idx[0]] = reinterpret_cast<uint64_t>(&tables[1]) | 0xb;
if (tables[1].entries[fr_idx[1]] & 0x1) { // We now have pages starting at "free_next" to bootstrap ourselves. Start by
page_table *old_pdt = tables[1].next(fr_idx[1]);
for (int i = 0; i < 512; ++i) tables[2].entries[i] = old_pdt->entries[i];
} else {
for (int i = 0; i < 512; ++i) tables[2].entries[i] = 0;
}
tables[1].entries[fr_idx[1]] = reinterpret_cast<uint64_t>(&tables[2]) | 0xb;
// No need to copy the last-level page table, we're overwriting the whole thing
tables[2].entries[fr_idx[2]] = reinterpret_cast<uint64_t>(&tables[3]) | 0xb;
page_in(&tables[0], free_aligned_phys, free_next, 512, nullptr);
// We now have 2MiB starting at "free_aligned_phys" to bootstrap ourselves. Start by
// taking inventory of free pages. // taking inventory of free pages.
page_block *free_head = nullptr; page_block *free_head = nullptr;
page_block *used_head = nullptr; page_block *used_head = nullptr;
free_next = gather_block_lists( free_next = gather_block_lists(
free_aligned_phys, free_next, free_next, memory_map, map_length, desc_length,
memory_map, map_length, desc_length,
&free_head, &used_head); &free_head, &used_head);
// Unused page_block structs go here - finish out the current page with them // Unused page_block structs go here - finish out the current page with them
@@ -309,16 +390,68 @@ memory_initialize_managers(const void *memory_map, size_t map_length, size_t des
free_next = page_align(free_next); free_next = page_align(free_next);
// Now go back through these lists and consolidate // Now go back through these lists and consolidate
page_block *freed = free_head->list_consolidate(); page_block *freed = page_block::consolidate(free_head);
cache_head->list_append(freed); cache_head = page_block::append(cache_head, freed);
freed = used_head->list_consolidate(); freed = page_block::consolidate(used_head);
cache_head->list_append(freed); cache_head = page_block::append(cache_head, freed);
// Pull out the block that represents the bootstrap pages we've used
uint64_t used = free_next - free_region_start_virt;
uint64_t used_pages = used / page_manager::page_size;
uint64_t remaining_pages = want_pages - used_pages;
page_block *removed = remove_block_for(
&free_head,
free_region_start_phys,
used_pages,
&cache_head);
kassert(removed, "remove_block_for didn't find the bootstrap region.");
kassert(removed->physical_address == free_region_start_phys,
"remove_block_for found the wrong region.");
// Add it to the used list
removed->virtual_address = free_region_start_virt;
removed->flags = page_block_flags::used;
used_head = page_block::insert_virtual(used_head, removed);
// Pull out the block that represents the rest
uint64_t free_next_phys = free_region_start_phys + used;
removed = remove_block_for(
&free_head,
free_next_phys,
remaining_pages,
&cache_head);
kassert(removed, "remove_block_for didn't find the page table region.");
kassert(removed->physical_address == free_next_phys,
"remove_block_for found the wrong region.");
uint64_t pt_start_phys = removed->physical_address;
uint64_t pt_start_virt = removed->physical_address + page_manager::page_offset;
// Record that we're about to remap it into the page table address space
removed->virtual_address = pt_start_virt;
removed->flags = page_block_flags::used;
used_head = page_block::insert_virtual(used_head, removed);
// Actually remap them into page table space
page_out(&tables[0], free_next, remaining_pages);
page_table_indices pg_idx{pt_start_virt};
copy_new_table(&tables[0], pg_idx[0], &tables[4]);
copy_new_table(&tables[4], pg_idx[1], &tables[5]);
copy_new_table(&tables[5], pg_idx[2], &tables[6]);
page_in(&tables[0], pt_start_phys, pt_start_virt, remaining_pages, tables + 4);
// Ok, now build an acutal set of kernel page tables that just contains // Ok, now build an acutal set of kernel page tables that just contains
// what the kernel actually has mapped. // what the kernel actually has mapped.
page_table *pages = reinterpret_cast<page_table *>(free_next); page_table *pages = reinterpret_cast<page_table *>(pt_start_virt);
unsigned consumed_pages = 1; // We're about to make a PML4, start with 1:w unsigned consumed_pages = 1; // We're about to make a PML4, start with 1
// Finally, remap the existing mappings, but making everything writable // Finally, remap the existing mappings, but making everything writable
// (especially the page tables themselves) // (especially the page tables themselves)
@@ -333,11 +466,12 @@ memory_initialize_managers(const void *memory_map, size_t map_length, size_t des
free_next += (consumed_pages * page_manager::page_size); free_next += (consumed_pages * page_manager::page_size);
// Put our new PML4 into CR3 to start using it // Put our new PML4 into CR3 to start using it
__asm__ __volatile__ ( "mov %%cr3, %0" : "=r" (pml4) ); // page_manager::set_pml4(pml4);
// We now have all used memory mapped ourselves. Let the page_manager take // We now have all used memory mapped ourselves. Let the page_manager take
// over from here. // over from here.
g_page_manager.init( g_page_manager.init(
free_head, used_head, cache_head, free_head, used_head, cache_head,
free_start, 1024, free_next); free_region_start_virt, used_pages,
free_next, remaining_pages - consumed_pages);
} }

View File

@@ -12,62 +12,73 @@ struct free_page_header
}; };
size_t size_t
page_block::list_count() page_block::length(page_block *list)
{ {
size_t i = 0; size_t i = 0;
for (page_block *b = this; b; b = b->next) ++i; for (page_block *b = list; b; b = b->next) ++i;
return i; return i;
} }
void page_block *
page_block::list_append(page_block *list) page_block::append(page_block *list, page_block *extra)
{ {
page_block *cur = this; if (list == nullptr) return extra;
while (cur->next) cur = cur->next; else if (extra == nullptr) return list;
cur->next = list;
page_block *cur = list;
while (cur->next)
cur = cur->next;
cur->next = extra;
return list;
} }
page_block * page_block *
page_block::list_insert_physical(page_block *block) page_block::insert_physical(page_block *list, page_block *block)
{ {
page_block *cur = this; if (list == nullptr) return block;
page_block **prev = nullptr; else if (block == nullptr) return list;
while (cur->physical_address < block->physical_address) {
prev = &cur->next; page_block *cur = list;
page_block *prev = nullptr;
while (cur && cur->physical_address < block->physical_address) {
prev = cur;
cur = cur->next; cur = cur->next;
} }
block->next = cur; block->next = cur;
if (prev) { if (prev) {
*prev = block; prev->next = block;
return this; return list;
} }
return block; return block;
} }
page_block * page_block *
page_block::list_insert_virtual(page_block *block) page_block::insert_virtual(page_block *list, page_block *block)
{ {
page_block *cur = this; if (list == nullptr) return block;
page_block **prev = nullptr; else if (block == nullptr) return list;
while (cur->virtual_address < block->virtual_address) {
prev = &cur->next; page_block *cur = list;
page_block *prev = nullptr;
while (cur && cur->virtual_address < block->virtual_address) {
prev = cur;
cur = cur->next; cur = cur->next;
} }
block->next = cur; block->next = cur;
if (prev) { if (prev) {
*prev = block; prev->next = block;
return this; return list;
} }
return block; return block;
} }
page_block * page_block *
page_block::list_consolidate() page_block::consolidate(page_block *list)
{ {
page_block *freed = nullptr; page_block *freed = nullptr;
page_block *cur = this; page_block *cur = list;
while (cur) { while (cur) {
page_block *next = cur->next; page_block *next = cur->next;
@@ -93,7 +104,7 @@ page_block::list_consolidate()
} }
void void
page_block::list_dump(const char *name, bool show_unmapped) page_block::dump(page_block *list, const char *name, bool show_unmapped)
{ {
console *cons = console::get(); console *cons = console::get();
cons->puts("Block list"); cons->puts("Block list");
@@ -104,12 +115,14 @@ page_block::list_dump(const char *name, bool show_unmapped)
cons->puts(":\n"); cons->puts(":\n");
int count = 0; int count = 0;
for (page_block *cur = this; cur; cur = cur->next) { for (page_block *cur = list; cur; cur = cur->next) {
count += 1; count += 1;
if (!(show_unmapped || cur->has_flag(page_block_flags::mapped))) if (!(show_unmapped || cur->has_flag(page_block_flags::mapped)))
continue; continue;
cons->puts(" "); cons->puts(" [");
cons->put_hex((uint64_t)cur);
cons->puts("] ");
cons->put_hex(cur->physical_address); cons->put_hex(cur->physical_address);
cons->puts(" "); cons->puts(" ");
cons->put_hex((uint32_t)cur->flags); cons->put_hex((uint32_t)cur->flags);
@@ -165,31 +178,33 @@ page_manager::init(
page_block *block_cache, page_block *block_cache,
uint64_t scratch_start, uint64_t scratch_start,
uint64_t scratch_pages, uint64_t scratch_pages,
uint64_t scratch_cur) uint64_t page_table_start,
uint64_t page_table_pages)
{ {
m_free = free; m_free = free;
m_used = used; m_used = used;
m_block_cache = block_cache; m_block_cache = block_cache;
kassert(scratch_cur == page_align(scratch_cur), // For now we're ignoring that we've got the scratch pages
"Current scratch space pointer is not page-aligned."); // allocated, full of page_block structs. Eventually hand
// control of that to a slab allocator.
uint64_t scratch_end = scratch_start + page_size * scratch_pages; m_page_cache = nullptr;
uint64_t unused_pages = (scratch_end - scratch_cur) / page_size; for (unsigned i = 0; i < page_table_pages; ++i) {
uint64_t addr = page_table_start + (i * page_size);
console *cons = console::get(); free_page_header *header = reinterpret_cast<free_page_header *>(addr);
header->count = 1;
unmap_pages(scratch_cur, unused_pages);
consolidate_blocks();
uint64_t scratch_aligned_start = page_table_align(scratch_start);
if (scratch_aligned_start != scratch_start) {
free_page_header *header =
reinterpret_cast<free_page_header *>(scratch_start);
header->count = (scratch_aligned_start - scratch_start) / page_size;
header->next = m_page_cache; header->next = m_page_cache;
m_page_cache = header; m_page_cache = header;
} }
console *cons = console::get();
consolidate_blocks();
page_block::dump(m_used, "used before map", true);
//map_pages(0xf0000000 + high_offset, 120);
} }
void void
@@ -223,6 +238,7 @@ page_manager::get_block()
void * void *
page_manager::map_pages(uint64_t address, unsigned count) page_manager::map_pages(uint64_t address, unsigned count)
{ {
page_table *pml4 = get_pml4();
} }
void void
@@ -237,7 +253,8 @@ page_manager::unmap_pages(uint64_t address, unsigned count)
kassert(cur, "Couldn't find existing mapped pages to unmap"); kassert(cur, "Couldn't find existing mapped pages to unmap");
uint64_t end = address + page_size * count; uint64_t size = page_size * count;
uint64_t end = address + size;
while (cur && cur->contains(address)) { while (cur && cur->contains(address)) {
uint64_t leading = address - cur->virtual_address; uint64_t leading = address - cur->virtual_address;
@@ -268,6 +285,8 @@ page_manager::unmap_pages(uint64_t address, unsigned count)
trail_block->copy(cur); trail_block->copy(cur);
trail_block->next = cur->next; trail_block->next = cur->next;
trail_block->count = pages; trail_block->count = pages;
trail_block->physical_address += size;
trail_block->virtual_address += size;
cur->count -= pages; cur->count -= pages;
@@ -279,8 +298,9 @@ page_manager::unmap_pages(uint64_t address, unsigned count)
*prev = cur->next; *prev = cur->next;
cur->next = nullptr; cur->next = nullptr;
cur->virtual_address = 0;
cur->flags = cur->flags & ~(page_block_flags::used | page_block_flags::mapped); cur->flags = cur->flags & ~(page_block_flags::used | page_block_flags::mapped);
m_free->list_insert_physical(cur); m_free = page_block::insert_physical(m_free, cur);
cur = next; cur = next;
} }
@@ -289,8 +309,8 @@ page_manager::unmap_pages(uint64_t address, unsigned count)
void void
page_manager::consolidate_blocks() page_manager::consolidate_blocks()
{ {
m_block_cache->list_append(m_free->list_consolidate()); m_block_cache = page_block::append(m_block_cache, page_block::consolidate(m_free));
m_block_cache->list_append(m_used->list_consolidate()); m_block_cache = page_block::append(m_block_cache, page_block::consolidate(m_used));
} }
static unsigned static unsigned
@@ -306,6 +326,18 @@ check_needs_page(page_table *table, unsigned index, page_table **free_pages)
return 1; return 1;
} }
static uint64_t
pt_to_phys(page_table *pt)
{
return reinterpret_cast<uint64_t>(pt) - page_manager::page_offset;
}
static page_table *
pt_from_phys(uint64_t p)
{
return reinterpret_cast<page_table *>((p + page_manager::page_offset) & ~0xfffull);
}
unsigned unsigned
page_in(page_table *pml4, uint64_t phys_addr, uint64_t virt_addr, uint64_t count, page_table *free_pages) page_in(page_table *pml4, uint64_t phys_addr, uint64_t virt_addr, uint64_t count, page_table *free_pages)
{ {

View File

@@ -8,6 +8,7 @@
#include "kutil/enum_bitfields.h" #include "kutil/enum_bitfields.h"
struct page_block; struct page_block;
struct page_table;
struct free_page_header; struct free_page_header;
@@ -15,12 +16,26 @@ struct free_page_header;
class page_manager class page_manager
{ {
public: public:
/// Size of a single page.
static const uint64_t page_size = 0x1000; static const uint64_t page_size = 0x1000;
/// Start of the higher half.
static const uint64_t high_offset = 0xffff800000000000; static const uint64_t high_offset = 0xffff800000000000;
/// Offset from physical where page tables are mapped.
static const uint64_t page_offset = 0xffffff8000000000;
page_manager(); page_manager();
/// Allocate and map pages into virtual memory.
/// \arg address The virtual address at which to map the pages
/// \arg count The number of pages to map
/// \returns A pointer to the start of the mapped region
void * map_pages(uint64_t address, unsigned count); void * map_pages(uint64_t address, unsigned count);
/// Unmap existing pages from memory.
/// \arg address The virtual address of the memory to unmap
/// \arg count The number of pages to unmap
void unmap_pages(uint64_t address, unsigned count); void unmap_pages(uint64_t address, unsigned count);
private: private:
@@ -33,7 +48,8 @@ private:
page_block *block_cache, page_block *block_cache,
uint64_t scratch_start, uint64_t scratch_start,
uint64_t scratch_pages, uint64_t scratch_pages,
uint64_t scratch_cur); uint64_t page_table_start,
uint64_t page_table_pages);
/// Initialize the virtual memory manager based on this object's state /// Initialize the virtual memory manager based on this object's state
void init_memory_manager(); void init_memory_manager();
@@ -50,6 +66,24 @@ private:
/// to the cache. /// to the cache.
void consolidate_blocks(); void consolidate_blocks();
/// Helper to read the PML4 table from CR3.
/// \returns A pointer to the current PML4 table.
static inline page_table * get_pml4()
{
uint64_t pml4 = 0;
__asm__ __volatile__ ( "mov %%cr3, %0" : "=r" (pml4) );
pml4 &= ~0xfffull;
return reinterpret_cast<page_table *>(pml4);
}
/// Helper to set the PML4 table pointer in CR3.
/// \arg pml4 A pointer to the PML4 table to install.
static inline void set_pml4(page_table *pml4)
{
__asm__ __volatile__ ( "mov %0, %%cr3" ::
"r" (reinterpret_cast<uint64_t>(pml4) & ~0xfffull) );
}
page_block *m_free; ///< Free pages list page_block *m_free; ///< Free pages list
page_block *m_used; ///< In-use pages list page_block *m_used; ///< In-use pages list
@@ -95,6 +129,7 @@ struct page_block
inline uint64_t virtual_end() const { return virtual_address + (count * page_manager::page_size); } inline uint64_t virtual_end() const { return virtual_address + (count * page_manager::page_size); }
inline bool contains(uint64_t vaddr) const { return vaddr >= virtual_address && vaddr < virtual_end(); } inline bool contains(uint64_t vaddr) const { return vaddr >= virtual_address && vaddr < virtual_end(); }
inline bool contains_physical(uint64_t addr) const { return addr >= physical_address && addr < physical_end(); }
/// Helper to zero out a block and optionally set the next pointer. /// Helper to zero out a block and optionally set the next pointer.
/// \arg next [optional] The value for the `next` pointer /// \arg next [optional] The value for the `next` pointer
@@ -104,41 +139,50 @@ struct page_block
/// \arg other The block to copy from /// \arg other The block to copy from
void copy(page_block *other); void copy(page_block *other);
/// \name Linked list functions /// \name Page block linked list functions
/// Functions to act on a `page_block *` as a linked list /// Functions to act on a `page_block *` as a linked list
/// @{ /// @{
/// Count the items in this linked list. /// Count the items in the given linked list.
/// \returns The number of entries in the list. /// \arg list The list to count
size_t list_count(); /// \returns The number of entries in the list.
static size_t length(page_block *list);
/// Append the gien block or list to this lit. /// Append a block or list to the given list.
/// \arg list The list to append to the current list /// \arg list The list to append to
void list_append(page_block *list); /// \arg extra The list or block to be appended
/// \returns The new list head
static page_block * append(page_block *list, page_block *extra);
/// Sorted-insert of a block into the list by physical address. /// Sorted-insert of a block into the list by physical address.
/// \arg list The list to insert into
/// \arg block The single block to insert /// \arg block The single block to insert
/// \returns The new list head /// \returns The new list head
page_block * list_insert_physical(page_block *block); static page_block * insert_physical(page_block *list, page_block *block);
/// Sorted-insert of a block into the list by virtual address. /// Sorted-insert of a block into the list by virtual address.
/// \arg list The list to insert into
/// \arg block The single block to insert /// \arg block The single block to insert
/// \returns The new list head /// \returns The new list head
page_block * list_insert_virtual(page_block *block); static page_block * insert_virtual(page_block *list, page_block *block);
/// Traverse the list, joining adjacent blocks where possible. /// Traverse the list, joining adjacent blocks where possible.
/// \returns A linked list of freed page_block structures. /// \arg list The list to consolidate
page_block * list_consolidate(); /// \returns A linked list of freed page_block structures.
static page_block * consolidate(page_block *list);
/// Traverse the list, printing debug info on this list. /// Traverse the list, printing debug info on this list.
/// \arg list The list to print
/// \arg name [optional] String to print as the name of this list /// \arg name [optional] String to print as the name of this list
/// \arg show_permanent [optional] If false, hide unmapped blocks /// \arg show_permanent [optional] If false, hide unmapped blocks
void list_dump(const char *name = nullptr, bool show_unmapped = false); static void dump(page_block *list, const char *name = nullptr, bool show_unmapped = false);
/// @} /// @}
}; };
/// Struct to allow easy accessing of a memory page being used as a page table. /// Struct to allow easy accessing of a memory page being used as a page table.
struct page_table struct page_table
{ {